Abstract

Profilin-1 (PFN1) is a cytoskeletal protein that regulates the dynamics of actin and microtubule assembly. Thus, PFN1 is essential for the normal division, motility, and morphology of cells. Unfortunately, conventional fusion and direct labeling strategies compromise different facets of PFN1 function. As a consequence, the only methods used to determine known PFN1 functions have been indirect and often deduced in cell-free biochemical assays. We engineered and characterized two genetically encoded versions of tagged PFN1 that behave identical to each other and the tag-free protein. In biochemical assays purified proteins bind to PIP lipids, catalyze nucleotide exchange on actin monomers, stimulate formin-mediated actin filament assembly, and impact microtubule dynamics. Halo-PFN1 or mApple-PFN1 restored morphological and cytoskeletal functions in PFN1-deficient mammalian cells. In biochemical assays, mAp-PFN1 bound tubulin dimers (kD = 1.89 µM) and the sides of microtubules in vitro. Titrations of self-labeling Halo-ligands were used to visualize molecules of PFN1. This approach combined with specific function-disrupting point-mutants (Y6D and R88E) revealed PFN1 bound to microtubules in live cells. Cells expressing the ALS-associated G118V disease variant did not associate with actin filaments or microtubules. Thus, these tagged PFN1s are reliable tools for studying the dynamic interactions of PFN1 with actin or microtubules in vitro as well as in important cell processes or disease-states.

Data availability

Datasets for each figure have been uploaded.Original image files (very large size) have been deposited in the Zenodo Henty-Ridilla laboratory community, available here: http://doi.org/10.5281/zenodo.53295855 and http://doi.org/10.5281/zenodo.53295854. Access will be granted once users confirm they will comply with CC-BY licensing.

Article and author information

Author details

  1. Morgan L Pimm

    Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Xinbei Liu

    Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Farzana Tuli

    Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jennifer Heritz

    Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Ashley Lojko

    Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Jessica L Henty-Ridilla

    Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, United States
    For correspondence
    ridillaj@upstate.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7203-8791

Funding

Sinsheimer Foundation (Scholar Award)

  • Jessica L Henty-Ridilla

ALS Association (20-IIP-506)

  • Jessica L Henty-Ridilla

National Institutes of Health (GM133485)

  • Jessica L Henty-Ridilla

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Pimm et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,665
    views
  • 501
    downloads
  • 14
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Morgan L Pimm
  2. Xinbei Liu
  3. Farzana Tuli
  4. Jennifer Heritz
  5. Ashley Lojko
  6. Jessica L Henty-Ridilla
(2022)
Visualizing molecules of functional human profilin
eLife 11:e76485.
https://doi.org/10.7554/eLife.76485

Share this article

https://doi.org/10.7554/eLife.76485

Further reading

    1. Biochemistry and Chemical Biology
    Gabriella O Estevam, Edmond Linossi ... James S Fraser
    Research Article

    Mutations in the kinase and juxtamembrane domains of the MET Receptor Tyrosine Kinase are responsible for oncogenesis in various cancers and can drive resistance to MET-directed treatments. Determining the most effective inhibitor for each mutational profile is a major challenge for MET-driven cancer treatment in precision medicine. Here, we used a deep mutational scan (DMS) of ~5764 MET kinase domain variants to profile the growth of each mutation against a panel of 11 inhibitors that are reported to target the MET kinase domain. We validate previously identified resistance mutations, pinpoint common resistance sites across type I, type II, and type I ½ inhibitors, unveil unique resistance and sensitizing mutations for each inhibitor, and verify non-cross-resistant sensitivities for type I and type II inhibitor pairs. We augment a protein language model with biophysical and chemical features to improve the predictive performance for inhibitor-treated datasets. Together, our study demonstrates a pooled experimental pipeline for identifying resistance mutations, provides a reference dictionary for mutations that are sensitized to specific therapies, and offers insights for future drug development.

    1. Biochemistry and Chemical Biology
    2. Genetics and Genomics
    Kira Breunig, Xuifen Lei ... Luiz O Penalva
    Research Article

    RNA binding proteins (RBPs) containing intrinsically disordered regions (IDRs) are present in diverse molecular complexes where they function as dynamic regulators. Their characteristics promote liquid-liquid phase separation (LLPS) and the formation of membraneless organelles such as stress granules and nucleoli. IDR-RBPs are particularly relevant in the nervous system and their dysfunction is associated with neurodegenerative diseases and brain tumor development. Serpine1 mRNA-binding protein 1 (SERBP1) is a unique member of this group, being mostly disordered and lacking canonical RNA-binding domains. We defined SERBP1’s interactome, uncovered novel roles in splicing, cell division and ribosomal biogenesis, and showed its participation in pathological stress granules and Tau aggregates in Alzheimer’s brains. SERBP1 preferentially interacts with other G-quadruplex (G4) binders, implicated in different stages of gene expression, suggesting that G4 binding is a critical component of SERBP1 function in different settings. Similarly, we identified important associations between SERBP1 and PARP1/polyADP-ribosylation (PARylation). SERBP1 interacts with PARP1 and its associated factors and influences PARylation. Moreover, protein complexes in which SERBP1 participates contain mostly PARylated proteins and PAR binders. Based on these results, we propose a feedback regulatory model in which SERBP1 influences PARP1 function and PARylation, while PARylation modulates SERBP1 functions and participation in regulatory complexes.