Cross-species analysis of LZTR1 loss-of-function mutants demonstrates dependency to RIT1 orthologs

  1. Antonio Cuevas-Navarro
  2. Laura Rodriguez-Muñoz
  3. Joaquim Grego-Bessa
  4. Alice Cheng
  5. Katherine A Rauen
  6. Anatoly Urisman
  7. Frank McCormick
  8. Gerardo Jimenez
  9. Pau Castel  Is a corresponding author
  1. University of California, San Francisco, United States
  2. Consejo Superior de Investigaciones Científicas, Spain
  3. Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Spain
  4. University of California, Davis, United States
  5. New York University, United States

Abstract

RAS GTPases are highly conserved proteins involved in the regulation of mitogenic signaling. We have previously described a novel Cullin 3 RING E3 ubiquitin ligase complex formed by the substrate adaptor protein LZTR1 that binds, ubiquitinates, and promotes proteasomal degradation of the RAS GTPase RIT1. In addition, others have described that this complex is also responsible for the ubiquitination of classical RAS GTPases. Here, we have analyzed the phenotypes of Lztr1 loss-of-function mutants in both fruit flies and mice and have demonstrated a biochemical preference for their RIT1 orthologs. Moreover, we show that Lztr1 is haplosufficient in mice and that embryonic lethality of the homozygous null allele can be rescued by deletion of Rit1. Overall, our results indicate that, in model organisms, RIT1 orthologs are the preferred substrates of LZTR1.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file; Source Data files have been provided for all Figures.

Article and author information

Author details

  1. Antonio Cuevas-Navarro

    Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  2. Laura Rodriguez-Muñoz

    Institute for Molecular Biology of Barcelona, Consejo Superior de Investigaciones Científicas, Barcelona, Spain
    Competing interests
    No competing interests declared.
  3. Joaquim Grego-Bessa

    Intercellular Signalling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0938-2346
  4. Alice Cheng

    Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  5. Katherine A Rauen

    MIND Institute, University of California, Davis, Sacramento, United States
    Competing interests
    No competing interests declared.
  6. Anatoly Urisman

    Department of Anatomic Pathology, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8364-5303
  7. Frank McCormick

    Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, United States
    Competing interests
    Frank McCormick, is a consultant for Ideaya Biosciences, Kura Oncology, Leidos Biomedical Research, Pfizer, Daiichi Sankyo, Amgen, PMV Pharma, OPNA-IO, and Quanta Therapeutics and has received research grants from Boehringer-Ingelheim and is a consultant for and cofounder of BridgeBio Pharma..
  8. Gerardo Jimenez

    Institute for Molecular Biology of Barcelona, Consejo Superior de Investigaciones Científicas, Barcelona, Spain
    Competing interests
    No competing interests declared.
  9. Pau Castel

    Department of Biochemistry and Molecular Pharmacology, New York University, New York, United States
    For correspondence
    pau.castel@nyulangone.org
    Competing interests
    Pau Castel, PC is a founder and advisory board of Venthera..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4972-4347

Funding

National Cancer Institute (F31CA265066)

  • Antonio Cuevas-Navarro

National Cancer Institute (R35CA197709)

  • Frank McCormick

National Cancer Institute (R00CA245122)

  • Pau Castel

DOD CDMRP Neurofibromatosis Research Program (W81XWH-20-1-0391)

  • Pau Castel

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#AN165444 and #AN179937) of the University of California San Francisco.

Copyright

© 2022, Cuevas-Navarro et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,829
    views
  • 283
    downloads
  • 14
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Antonio Cuevas-Navarro
  2. Laura Rodriguez-Muñoz
  3. Joaquim Grego-Bessa
  4. Alice Cheng
  5. Katherine A Rauen
  6. Anatoly Urisman
  7. Frank McCormick
  8. Gerardo Jimenez
  9. Pau Castel
(2022)
Cross-species analysis of LZTR1 loss-of-function mutants demonstrates dependency to RIT1 orthologs
eLife 11:e76495.
https://doi.org/10.7554/eLife.76495

Share this article

https://doi.org/10.7554/eLife.76495

Further reading

    1. Cancer Biology
    Bruno Bockorny, Lakshmi Muthuswamy ... Senthil K Muthuswamy
    Tools and Resources

    Pancreatic cancer has the worst prognosis of all common tumors. Earlier cancer diagnosis could increase survival rates and better assessment of metastatic disease could improve patient care. As such, there is an urgent need to develop biomarkers to diagnose this deadly malignancy. Analyzing circulating extracellular vesicles (cEVs) using ‘liquid biopsies’ offers an attractive approach to diagnose and monitor disease status. However, it is important to differentiate EV-associated proteins enriched in patients with pancreatic ductal adenocarcinoma (PDAC) from those with benign pancreatic diseases such as chronic pancreatitis and intraductal papillary mucinous neoplasm (IPMN). To meet this need, we combined the novel EVtrap method for highly efficient isolation of EVs from plasma and conducted proteomics analysis of samples from 124 individuals, including patients with PDAC, benign pancreatic diseases and controls. On average, 912 EV proteins were identified per 100 µL of plasma. EVs containing high levels of PDCD6IP, SERPINA12, and RUVBL2 were associated with PDAC compared to the benign diseases in both discovery and validation cohorts. EVs with PSMB4, RUVBL2, and ANKAR were associated with metastasis, and those with CRP, RALB, and CD55 correlated with poor clinical prognosis. Finally, we validated a seven EV protein PDAC signature against a background of benign pancreatic diseases that yielded an 89% prediction accuracy for the diagnosis of PDAC. To our knowledge, our study represents the largest proteomics profiling of circulating EVs ever conducted in pancreatic cancer and provides a valuable open-source atlas to the scientific community with a comprehensive catalogue of novel cEVs that may assist in the development of biomarkers and improve the outcomes of patients with PDAC.

    1. Cancer Biology
    2. Evolutionary Biology
    Lingjie Zhang, Tong Deng ... Hai-Jun Wen
    Research Article

    A central goal of cancer genomics is to identify, in each patient, all the cancer-driving mutations. Among them, point mutations are referred to as cancer-driving nucleotides (CDNs), which recur in cancers. The companion study shows that the probability of i recurrent hits in n patients would decrease exponentially with i; hence, any mutation with i ≥ 3 hits in The Cancer Genome Atlas (TCGA) database is a high-probability CDN. This study characterizes the 50–150 CDNs identifiable for each cancer type of TCGA (while anticipating 10 times more undiscovered ones) as follows: (i) CDNs tend to code for amino acids of divergent chemical properties. (ii) At the genic level, far more CDNs (more than fivefold) fall on noncanonical than canonical cancer-driving genes (CDGs). Most undiscovered CDNs are expected to be on unknown CDGs. (iii) CDNs tend to be more widely shared among cancer types than canonical CDGs, mainly because of the higher resolution at the nucleotide than the whole-gene level. (iv) Most important, among the 50–100 coding region mutations carried by a cancer patient, 5–8 CDNs are expected but only 0–2 CDNs have been identified at present. This low level of identification has hampered functional test and gene-targeted therapy. We show that, by expanding the sample size to 105, most CDNs can be identified. Full CDN identification will then facilitate the design of patient-specific targeting against multiple CDN-harboring genes.