Landscape of epithelial mesenchymal plasticity as an emergent property of coordinated teams in regulatory networks

  1. Kishore Hari
  2. Varun Ullanat
  3. Archana Balasubramanian
  4. Aditi Gopalan
  5. Mohit Kumar Jolly  Is a corresponding author
  1. Indian Institute of Science Bangalore, India
  2. RV College of Engineering, India
  3. PES University, India

Abstract

Elucidating the design principles of regulatory networks driving cellular decision-making has fundamental implications in mapping and eventually controlling cell-fate decisions. Despite being complex, these regulatory networks often only give rise to a few phenotypes. Previously, we identified two 'teams' of nodes in a small cell lung cancer regulatory network that constrained the phenotypic repertoire and aligned strongly with the dominant phenotypes obtained from network simulations (Chauhan et al., 2021). However, it remained elusive whether these 'teams' exist in other networks, and how do they shape the phenotypic landscape. Here, we demonstrate that five different networks of varying sizes governing epithelial-mesenchymal plasticity comprised of two 'teams' of players - one comprised of canonical drivers of epithelial phenotype and the other containing the mesenchymal inducers. These 'teams' are specific to the topology of these regulatory networks and orchestrate a bimodal phenotypic landscape with the epithelial and mesenchymal phenotypes being more frequent and dynamically robust to perturbations, relative to the intermediary/hybrid epithelial/ mesenchymal ones. Our analysis reveals that network topology alone can contain information about corresponding phenotypic distributions, thus obviating the need to simulate them. We propose 'teams' of nodes as a network design principle that can drive cell-fate canalization in diverse decision-making processes.

Data availability

The current manuscript is a computational study. All raw numerical data used to generate the graphs is available at Dryad

The following data sets were generated
    1. Jolly MJ
    2. et al
    (2022) Data from: v
    Dryad Digital Repository, doi:10.5061/dryad.ncjsxksz7.

Article and author information

Author details

  1. Kishore Hari

    Centre for BioSystems Science and Engineering, Indian Institute of Science Bangalore, Bengaluru, India
    Competing interests
    The authors declare that no competing interests exist.
  2. Varun Ullanat

    Department of Biotechnology, RV College of Engineering, Bengaluru, India
    Competing interests
    The authors declare that no competing interests exist.
  3. Archana Balasubramanian

    Department of Biotechnology, PES University, Bengaluru, India
    Competing interests
    The authors declare that no competing interests exist.
  4. Aditi Gopalan

    Department of Biotechnology, RV College of Engineering, Bengaluru, India
    Competing interests
    The authors declare that no competing interests exist.
  5. Mohit Kumar Jolly

    Centre for BioSystems Science and Engineering, Indian Institute of Science Bangalore, Bengaluru, India
    For correspondence
    mkjolly@iisc.ac.in
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6631-2109

Funding

Science and Engineering Research Board (SB/S2/RJN-049/2018)

  • Mohit Kumar Jolly

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Hari et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,365
    views
  • 333
    downloads
  • 36
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kishore Hari
  2. Varun Ullanat
  3. Archana Balasubramanian
  4. Aditi Gopalan
  5. Mohit Kumar Jolly
(2022)
Landscape of epithelial mesenchymal plasticity as an emergent property of coordinated teams in regulatory networks
eLife 11:e76535.
https://doi.org/10.7554/eLife.76535

Share this article

https://doi.org/10.7554/eLife.76535

Further reading

    1. Computational and Systems Biology
    Harlan P Stevens, Carly V Winegar ... Stephen R Piccolo
    Research Article

    To help maximize the impact of scientific journal articles, authors must ensure that article figures are accessible to people with color-vision deficiencies (CVDs), which affect up to 8% of males and 0.5% of females. We evaluated images published in biology- and medicine-oriented research articles between 2012 and 2022. Most included at least one color contrast that could be problematic for people with deuteranopia (‘deuteranopes’), the most common form of CVD. However, spatial distances and within-image labels frequently mitigated potential problems. Initially, we reviewed 4964 images from eLife, comparing each against a simulated version that approximated how it might appear to deuteranopes. We identified 636 (12.8%) images that we determined would be difficult for deuteranopes to interpret. Our findings suggest that the frequency of this problem has decreased over time and that articles from cell-oriented disciplines were most often problematic. We used machine learning to automate the identification of problematic images. For a hold-out test set from eLife (n=879), a convolutional neural network classified the images with an area under the precision-recall curve of 0.75. The same network classified images from PubMed Central (n=1191) with an area under the precision-recall curve of 0.39. We created a Web application (https://bioapps.byu.edu/colorblind_image_tester); users can upload images, view simulated versions, and obtain predictions. Our findings shed new light on the frequency and nature of scientific images that may be problematic for deuteranopes and motivate additional efforts to increase accessibility.

    1. Computational and Systems Biology
    Matthew Millard, David W Franklin, Walter Herzog
    Research Article

    The force developed by actively lengthened muscle depends on different structures across different scales of lengthening. For small perturbations, the active response of muscle is well captured by a linear-time-invariant (LTI) system: a stiff spring in parallel with a light damper. The force response of muscle to longer stretches is better represented by a compliant spring that can fix its end when activated. Experimental work has shown that the stiffness and damping (impedance) of muscle in response to small perturbations is of fundamental importance to motor learning and mechanical stability, while the huge forces developed during long active stretches are critical for simulating and predicting injury. Outside of motor learning and injury, muscle is actively lengthened as a part of nearly all terrestrial locomotion. Despite the functional importance of impedance and active lengthening, no single muscle model has all these mechanical properties. In this work, we present the viscoelastic-crossbridge active-titin (VEXAT) model that can replicate the response of muscle to length changes great and small. To evaluate the VEXAT model, we compare its response to biological muscle by simulating experiments that measure the impedance of muscle, and the forces developed during long active stretches. In addition, we have also compared the responses of the VEXAT model to a popular Hill-type muscle model. The VEXAT model more accurately captures the impedance of biological muscle and its responses to long active stretches than a Hill-type model and can still reproduce the force-velocity and force-length relations of muscle. While the comparison between the VEXAT model and biological muscle is favorable, there are some phenomena that can be improved: the low frequency phase response of the model, and a mechanism to support passive force enhancement.