Landscape of epithelial mesenchymal plasticity as an emergent property of coordinated teams in regulatory networks

  1. Kishore Hari
  2. Varun Ullanat
  3. Archana Balasubramanian
  4. Aditi Gopalan
  5. Mohit Kumar Jolly  Is a corresponding author
  1. Indian Institute of Science Bangalore, India
  2. RV College of Engineering, India
  3. PES University, India

Abstract

Elucidating the design principles of regulatory networks driving cellular decision-making has fundamental implications in mapping and eventually controlling cell-fate decisions. Despite being complex, these regulatory networks often only give rise to a few phenotypes. Previously, we identified two 'teams' of nodes in a small cell lung cancer regulatory network that constrained the phenotypic repertoire and aligned strongly with the dominant phenotypes obtained from network simulations (Chauhan et al., 2021). However, it remained elusive whether these 'teams' exist in other networks, and how do they shape the phenotypic landscape. Here, we demonstrate that five different networks of varying sizes governing epithelial-mesenchymal plasticity comprised of two 'teams' of players - one comprised of canonical drivers of epithelial phenotype and the other containing the mesenchymal inducers. These 'teams' are specific to the topology of these regulatory networks and orchestrate a bimodal phenotypic landscape with the epithelial and mesenchymal phenotypes being more frequent and dynamically robust to perturbations, relative to the intermediary/hybrid epithelial/ mesenchymal ones. Our analysis reveals that network topology alone can contain information about corresponding phenotypic distributions, thus obviating the need to simulate them. We propose 'teams' of nodes as a network design principle that can drive cell-fate canalization in diverse decision-making processes.

Data availability

The current manuscript is a computational study. All raw numerical data used to generate the graphs is available at Dryad

The following data sets were generated
    1. Jolly MJ
    2. et al
    (2022) Data from: v
    Dryad Digital Repository, doi:10.5061/dryad.ncjsxksz7.

Article and author information

Author details

  1. Kishore Hari

    Centre for BioSystems Science and Engineering, Indian Institute of Science Bangalore, Bengaluru, India
    Competing interests
    The authors declare that no competing interests exist.
  2. Varun Ullanat

    Department of Biotechnology, RV College of Engineering, Bengaluru, India
    Competing interests
    The authors declare that no competing interests exist.
  3. Archana Balasubramanian

    Department of Biotechnology, PES University, Bengaluru, India
    Competing interests
    The authors declare that no competing interests exist.
  4. Aditi Gopalan

    Department of Biotechnology, RV College of Engineering, Bengaluru, India
    Competing interests
    The authors declare that no competing interests exist.
  5. Mohit Kumar Jolly

    Centre for BioSystems Science and Engineering, Indian Institute of Science Bangalore, Bengaluru, India
    For correspondence
    mkjolly@iisc.ac.in
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6631-2109

Funding

Science and Engineering Research Board (SB/S2/RJN-049/2018)

  • Mohit Kumar Jolly

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Hari et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,441
    views
  • 343
    downloads
  • 39
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kishore Hari
  2. Varun Ullanat
  3. Archana Balasubramanian
  4. Aditi Gopalan
  5. Mohit Kumar Jolly
(2022)
Landscape of epithelial mesenchymal plasticity as an emergent property of coordinated teams in regulatory networks
eLife 11:e76535.
https://doi.org/10.7554/eLife.76535

Share this article

https://doi.org/10.7554/eLife.76535

Further reading

    1. Cancer Biology
    2. Computational and Systems Biology
    Rosalyn W Sayaman, Masaru Miyano ... Mark LaBarge
    Research Article

    Effects from aging in single cells are heterogenous, whereas at the organ- and tissue-levels aging phenotypes tend to appear as stereotypical changes. The mammary epithelium is a bilayer of two major phenotypically and functionally distinct cell lineages: luminal epithelial and myoepithelial cells. Mammary luminal epithelia exhibit substantial stereotypical changes with age that merit attention because these cells are the putative cells-of-origin for breast cancers. We hypothesize that effects from aging that impinge upon maintenance of lineage fidelity increase susceptibility to cancer initiation. We generated and analyzed transcriptomes from primary luminal epithelial and myoepithelial cells from younger <30 (y)ears old and older >55y women. In addition to age-dependent directional changes in gene expression, we observed increased transcriptional variance with age that contributed to genome-wide loss of lineage fidelity. Age-dependent variant responses were common to both lineages, whereas directional changes were almost exclusively detected in luminal epithelia and involved altered regulation of chromatin and genome organizers such as SATB1. Epithelial expression of gap junction protein GJB6 increased with age, and modulation of GJB6 expression in heterochronous co-cultures revealed that it provided a communication conduit from myoepithelial cells that drove directional change in luminal cells. Age-dependent luminal transcriptomes comprised a prominent signal that could be detected in bulk tissue during aging and transition into cancers. A machine learning classifier based on luminal-specific aging distinguished normal from cancer tissue and was highly predictive of breast cancer subtype. We speculate that luminal epithelia are the ultimate site of integration of the variant responses to aging in their surrounding tissue, and that their emergent phenotype both endows cells with the ability to become cancer-cells-of-origin and represents a biosensor that presages cancer susceptibility.

    1. Computational and Systems Biology
    2. Microbiology and Infectious Disease
    Gaetan De Waele, Gerben Menschaert, Willem Waegeman
    Research Article

    Timely and effective use of antimicrobial drugs can improve patient outcomes, as well as help safeguard against resistance development. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is currently routinely used in clinical diagnostics for rapid species identification. Mining additional data from said spectra in the form of antimicrobial resistance (AMR) profiles is, therefore, highly promising. Such AMR profiles could serve as a drop-in solution for drastically improving treatment efficiency, effectiveness, and costs. This study endeavors to develop the first machine learning models capable of predicting AMR profiles for the whole repertoire of species and drugs encountered in clinical microbiology. The resulting models can be interpreted as drug recommender systems for infectious diseases. We find that our dual-branch method delivers considerably higher performance compared to previous approaches. In addition, experiments show that the models can be efficiently fine-tuned to data from other clinical laboratories. MALDI-TOF-based AMR recommender systems can, hence, greatly extend the value of MALDI-TOF MS for clinical diagnostics. All code supporting this study is distributed on PyPI and is packaged at https://github.com/gdewael/maldi-nn.