Concerted modification of nucleotides at functional centers of the ribosome revealed by single-molecule RNA modification profiling

  1. Andrew D Bailey IV  Is a corresponding author
  2. Jason Talkish
  3. Hongxu Ding
  4. Haller A Igel
  5. Alejandra Duran
  6. Shreya Mantripragada
  7. Benedict Paten  Is a corresponding author
  8. Manuel Ares Jr  Is a corresponding author
  1. University of California, Santa Cruz, United States
  2. Colegio Santa Francisca Romana, Colombia
  3. Monta Vista High School, United States

Abstract

Nucleotides in RNA and DNA are chemically modified by numerous enzymes that alter their function. Eukaryotic ribosomal RNA (rRNA) is modified at more than 100 locations, particularly at highly conserved and functionally important nucleotides. During ribosome biogenesis, modifications are added at various stages of assembly. The existence of differently modified classes of ribosomes in normal cells is unknown because no method exists to simultaneously evaluate the modification status at all sites within a single rRNA molecule. Using a combination of yeast genetics and nanopore direct RNA sequencing, we developed a reliable method to track the modification status of single rRNA molecules at 37 sites in 18S rRNA and 73 sites in 25S rRNA. We use our method to characterize patterns of modification heterogeneity and identify concerted modification of nucleotides found near functional centers of the ribosome. Distinct, undermodified subpopulations of rRNAs accumulate upon loss of Dbp3 or Prp43 RNA helicases, suggesting overlapping roles in ribosome biogenesis. Modification profiles are surprisingly resistant to change in response to many genetic and acute environmental conditions that affect translation, ribosome biogenesis, and pre-mRNA splicing. The ability to capture single molecule RNA modification profiles provides new insights into the roles of nucleotide modifications in RNA function.

Data availability

Fastq files from all direct RNA sequencing runs and signalAlign modification calls are publicly available in NCBI's Gene Expression Omnibus (GEO) and are accessible through GEO Series accession number GSE186634 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE186634). Fast5 and fastq files for all direct RNA sequencing are available in the European Nucleotide Archive (ENA) at EMBL-EBI under accession number PRJEB48183 (https://www.ebi.ac.uk/ena/browser/view/PRJEB48183). A detailed description of the datasets used and sequenced in this work with their corresponding ENA or GEO IDs can be found in (table supplement 7).Code availabilityDocumentation, install requirements, and analysis scripts for all work specific to this paper can be found at https://github.com/adbailey4/yeast_rrna_modification_detection. SignalAlign v1.0.0 can be found at https://github.com/UCSC-nanopore-cgl/signalAlign and embed_fast5 1.0.0 can be found https://github.com/adbailey4/embed_fast5.

The following data sets were generated

Article and author information

Author details

  1. Andrew D Bailey IV

    Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, United States
    For correspondence
    andbaile@ucsc.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8304-7565
  2. Jason Talkish

    Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0260-3345
  3. Hongxu Ding

    Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Haller A Igel

    Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Alejandra Duran

    Colegio Santa Francisca Romana, Bogota, Colombia
    Competing interests
    The authors declare that no competing interests exist.
  6. Shreya Mantripragada

    Monta Vista High School, Cupertino, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6234-6176
  7. Benedict Paten

    Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, United States
    For correspondence
    bpaten@ucsc.edu
    Competing interests
    The authors declare that no competing interests exist.
  8. Manuel Ares Jr

    Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, United States
    For correspondence
    ares@ucsc.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2552-9168

Funding

National Institute of General Medical Sciences (R01 GM040478)

  • Manuel Ares Jr

National Human Genome Research Institute (R01 HG010053)

  • Manuel Ares Jr

National Human Genome Research Institute (U41HG010972)

  • Benedict Paten

National Human Genome Research Institute (R01HG010485)

  • Benedict Paten

National Human Genome Research Institute (U01HG010961)

  • Benedict Paten

NIH Office of the Director (OT2OD026682)

  • Benedict Paten

NIH Office of the Director (OT2OD026682)

  • Benedict Paten

National Heart, Lung, and Blood Institute (U01HL137183)

  • Benedict Paten

National Human Genome Research Institute (2U41HG007234)

  • Benedict Paten

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Marina V Rodnina, Max Planck Institute for Biophysical Chemistry, Germany

Version history

  1. Preprint posted: December 17, 2021 (view preprint)
  2. Received: December 21, 2021
  3. Accepted: April 5, 2022
  4. Accepted Manuscript published: April 6, 2022 (version 1)
  5. Accepted Manuscript updated: April 7, 2022 (version 2)
  6. Version of Record published: April 27, 2022 (version 3)

Copyright

© 2022, Bailey et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,848
    views
  • 479
    downloads
  • 18
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Andrew D Bailey IV
  2. Jason Talkish
  3. Hongxu Ding
  4. Haller A Igel
  5. Alejandra Duran
  6. Shreya Mantripragada
  7. Benedict Paten
  8. Manuel Ares Jr
(2022)
Concerted modification of nucleotides at functional centers of the ribosome revealed by single-molecule RNA modification profiling
eLife 11:e76562.
https://doi.org/10.7554/eLife.76562

Share this article

https://doi.org/10.7554/eLife.76562

Further reading

    1. Cell Biology
    2. Neuroscience
    Mariana I Tsap, Andriy S Yatsenko ... Halyna R Shcherbata
    Research Article

    Mutations in Drosophila Swiss Cheese (SWS) gene or its vertebrate orthologue Neuropathy Target Esterase (NTE) lead to progressive neuronal degeneration in flies and humans. Despite its enzymatic function as a phospholipase is well-established, the molecular mechanism responsible for maintaining nervous system integrity remains unclear. In this study, we found that NTE/SWS is present in surface glia that forms the blood-brain-barrier (BBB) and that NTE/SWS is important to maintain its structure and permeability. Importantly, BBB glia-specific expression of Drosophila NTE/SWS or human NTE in the sws mutant background fully rescues surface glial organization and partially restores BBB integrity, suggesting a conserved function of NTE/SWS. Interestingly, sws mutant glia showed abnormal organization of plasma membrane domains and tight junction rafts accompanied by the accumulation of lipid droplets, lysosomes, and multilamellar bodies. Since the observed cellular phenotypes closely resemble the characteristics described in a group of metabolic disorders known as lysosomal storage diseases (LSDs), our data established a novel connection between NTE/SWS and these conditions. We found that mutants with defective BBB exhibit elevated levels of fatty acids, which are precursors of eicosanoids and are involved in the inflammatory response. Also, as a consequence of a permeable BBB, several innate immunity factors are upregulated in an age-dependent manner, while BBB glia-specific expression of NTE/SWS normalizes inflammatory response. Treatment with anti-inflammatory agents prevents the abnormal architecture of the BBB, suggesting that inflammation contributes to the maintenance of a healthy brain barrier. Considering the link between a malfunctioning BBB and various neurodegenerative diseases, gaining a deeper understanding of the molecular mechanisms causing inflammation due to a defective BBB could help to promote the use of anti-inflammatory therapies for age-related neurodegeneration.

    1. Cell Biology
    2. Structural Biology and Molecular Biophysics
    Marcel Proske, Robert Janowski ... Dierk Niessing
    Research Article

    Mutations in the human PURA gene cause the neurodevelopmental PURA syndrome. In contrast to several other monogenetic disorders, almost all reported mutations in this nucleic acid-binding protein result in the full disease penetrance. In this study, we observed that patient mutations across PURA impair its previously reported co-localization with processing bodies. These mutations either destroyed the folding integrity, RNA binding, or dimerization of PURA. We also solved the crystal structures of the N- and C-terminal PUR domains of human PURA and combined them with molecular dynamics simulations and nuclear magnetic resonance measurements. The observed unusually high dynamics and structural promiscuity of PURA indicated that this protein is particularly susceptible to mutations impairing its structural integrity. It offers an explanation why even conservative mutations across PURA result in the full penetrance of symptoms in patients with PURA syndrome.