Stereotyped behavioral maturation and rhythmic quiescence in C.elegans embryos

  1. Evan L Ardiel  Is a corresponding author
  2. Andrew Lauziere
  3. Stephen Xu
  4. Brandon J Harvey
  5. Ryan Patrick Christensen
  6. Stephen Nurrish
  7. Joshua M Kaplan
  8. Hari Shroff
  1. Massachusetts General Hospital, United States
  2. National Institute of Biomedical Imaging and Bioengineering, United States

Abstract

Systematic analysis of rich behavioral recordings is being used to uncover how circuits encode complex behaviors. Here we apply this approach to embryos. What are the first embryonic behaviors and how do they evolve as early neurodevelopment ensues? To address these questions, we present a systematic description of behavioral maturation for Caenorhabditis elegans embryos. Posture libraries were built using a genetically encoded motion capture suit imaged with light-sheet microscopy and annotated using custom tracking software. Analysis of cell trajectories, postures, and behavioral motifs revealed a stereotyped developmental progression. Early movement is dominated by flipping between dorsal and ventral coiling, which gradually slows into a period of reduced motility. Late-stage embryos exhibit sinusoidal waves of dorsoventral bends, prolonged bouts of directed motion, and a rhythmic pattern of pausing, which we designate slow wave twitch (SWT). Synaptic transmission is required for late-stage motion but not for early flipping nor the intervening inactive phase. A high-throughput behavioral assay and calcium imaging revealed that SWT is elicited by the rhythmic activity of a quiescence-promoting neuron (RIS). Similar periodic quiescent states are seen prenatally in diverse animals and may play an important role in promoting normal developmental outcomes.

Data availability

Annotated image volumes are available on FigShare. Code for MHHT is available on GitHub.

The following data sets were generated

Article and author information

Author details

  1. Evan L Ardiel

    Department of Molecular Biology, Massachusetts General Hospital, Boston, United States
    For correspondence
    ardiel@molbio.mgh.harvard.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9366-5751
  2. Andrew Lauziere

    National Institute of Biomedical Imaging and Bioengineering, Bethesda, United States
    Competing interests
    No competing interests declared.
  3. Stephen Xu

    National Institute of Biomedical Imaging and Bioengineering, Bethesda, United States
    Competing interests
    No competing interests declared.
  4. Brandon J Harvey

    National Institute of Biomedical Imaging and Bioengineering, Bethesda, United States
    Competing interests
    Brandon J Harvey, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7471-9937
  5. Ryan Patrick Christensen

    National Institute of Biomedical Imaging and Bioengineering, Bethesda, United States
    Competing interests
    No competing interests declared.
  6. Stephen Nurrish

    Department of Molecular Biology, Massachusetts General Hospital, Boston, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2653-9384
  7. Joshua M Kaplan

    Department of Molecular Biology, Massachusetts General Hospital, Boston, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7418-7179
  8. Hari Shroff

    National Institute of Biomedical Imaging and Bioengineering, Bethesda, United States
    Competing interests
    No competing interests declared.

Funding

William Randolph Hearst Foundation

  • Evan L Ardiel

National Science Foundation (DGE-1632976)

  • Andrew Lauziere

National Institutes of Health (NS32196)

  • Joshua M Kaplan

National Institutes of Health (NS121182)

  • Joshua M Kaplan

National Institute of Biomedical Imaging and Bioengineering

  • Hari Shroff

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 1,643
    views
  • 297
    downloads
  • 6
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Evan L Ardiel
  2. Andrew Lauziere
  3. Stephen Xu
  4. Brandon J Harvey
  5. Ryan Patrick Christensen
  6. Stephen Nurrish
  7. Joshua M Kaplan
  8. Hari Shroff
(2022)
Stereotyped behavioral maturation and rhythmic quiescence in C.elegans embryos
eLife 11:e76836.
https://doi.org/10.7554/eLife.76836

Share this article

https://doi.org/10.7554/eLife.76836

Further reading

    1. Neuroscience
    Patricia E Phelps, Sung Min Ha ... Xia Yang
    Research Article

    Olfactory ensheathing cells (OECs) are unique glial cells found in both central and peripheral nervous systems where they support continuous axonal outgrowth of olfactory sensory neurons to their targets. Previously, we reported that following severe spinal cord injury, OECs transplanted near the injury site modify the inhibitory glial scar and facilitate axon regeneration past the scar border and into the lesion. To better understand the mechanisms underlying the reparative properties of OECs, we used single-cell RNA-sequencing of OECs from adult rats to study their gene expression programs. Our analyses revealed five diverse OEC subtypes, each expressing novel marker genes and pathways indicative of progenitor, axonal regeneration, secreted molecules, or microglia-like functions. We found substantial overlap of OEC genes with those of Schwann cells, but also with microglia, astrocytes, and oligodendrocytes. We confirmed established markers on cultured OECs, and localized select top genes of OEC subtypes in olfactory bulb tissue. We also show that OECs secrete Reelin and Connective tissue growth factor, extracellular matrix molecules which are important for neural repair and axonal outgrowth. Our results support that OECs are a unique hybrid glia, some with progenitor characteristics, and that their gene expression patterns indicate functions related to wound healing, injury repair, and axonal regeneration.

    1. Neuroscience
    Aida Bareghamyan, Changfeng Deng ... Don B Arnold
    Tools and Resources

    Recombinant optogenetic and chemogenetic proteins are potent tools for manipulating neuronal activity and controlling neural circuit function. However, there are few analogous tools for manipulating the structure of neural circuits. Here, we introduce three rationally designed genetically encoded tools that use E3 ligase-dependent mechanisms to trigger the degradation of synaptic scaffolding proteins, leading to functional ablation of synapses. First, we developed a constitutive excitatory synapse ablator, PFE3, analogous to the inhibitory synapse ablator GFE3. PFE3 targets the RING domain of the E3 ligase Mdm2 and the proteasome-interacting region of Protocadherin 10 to the scaffolding protein PSD-95, leading to efficient ablation of excitatory synapses. In addition, we developed a light-inducible version of GFE3, paGFE3, using a novel photoactivatable complex based on the photocleavable protein PhoCl2c. paGFE3 degrades Gephyrin and ablates inhibitory synapses in response to 400 nm light. Finally, we developed a chemically inducible version of GFE3, chGFE3, which degrades inhibitory synapses when combined with the bio-orthogonal dimerizer HaloTag ligand-trimethoprim. Each tool is specific, reversible, and capable of breaking neural circuits at precise locations.