Genetic variation of putative myokine signaling is dominated by biologic sex and sex hormones

  1. Leandro M Velez
  2. Cassandra Van
  3. Timothy M Moore
  4. Zhenqi Zhou
  5. Casey Johnson
  6. Andrea L Hevener
  7. Marcus M Seldin  Is a corresponding author
  1. University of California, Irvine, United States
  2. David Geffen School of Medicine at UCLA, United States

Abstract

Skeletal muscle plays an integral role in coordinating physiologic homeostasis, where signaling to other tissues via myokines allows for coordination of complex processes. Here, we aimed to leverage natural genetic correlation structure of gene expression both within and across tissues to understand how muscle interacts with metabolic tissues. Specifically, we performed a survey of genetic correlations focused on myokine gene regulation, muscle cell composition, cross-tissue signaling and interactions with genetic sex in humans. While expression levels of a majority of myokines and cell proportions within skeletal muscle showed little relative differences between males and females, nearly all significant cross-tissue enrichments operated in a sex-specific or hormone-dependent fashion; in particular, with estradiol. These sex- and hormone-specific effects were consistent across key metabolic tissues: liver, pancreas, hypothalamus, intestine, heart, visceral and subcutaneous adipose tissue. To characterize the role of estradiol receptor signaling on myokine expression, we generated male and female mice which lack estrogen receptor α specifically in skeletal muscle (MERKO) and integrated with human data. These analyses highlighted potential mechanisms of sex-dependent myokine signaling conserved between species, such as myostatin enriched for divergent substrate utilization pathways between sexes. Several other putative sex-dependent mechanisms of myokine signaling were uncovered, such as muscle-derived TNFA enriched for stronger inflammatory signaling in females compared to males and GPX3 as a male-specific link between glycolytic fiber abundance and hepatic inflammation. Collectively, we provide a population genetics framework for inferring muscle signaling to metabolic tissues in humans. We further highlight sex and estradiol receptor signaling as critical variables when assaying myokine functions and how changes in cell composition are predicted to impact other metabolic organs.

Data availability

All Datasets and detailed analysis available at: https://github.com/marcus-seldin/myokine-signalingNew RNA-seq data generated as part of this study deposited in NIH sequence read archive (SRA) under the project accession: PRJNA785746

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Leandro M Velez

    Department of Biological Chemistry, University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Cassandra Van

    Department of Biological Chemistry, University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Timothy M Moore

    David Geffen School of Medicine at UCLA, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Zhenqi Zhou

    David Geffen School of Medicine at UCLA, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Casey Johnson

    Department of Biological Chemistry, University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Andrea L Hevener

    David Geffen School of Medicine at UCLA, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Marcus M Seldin

    Department of Biological Chemistry, University of California, Irvine, Irvine, United States
    For correspondence
    mseldin@uci.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8026-4759

Funding

National Institutes of Health (R00: HL138193)

  • Marcus M Seldin

National Institutes of Health (DP1: DK130640)

  • Marcus M Seldin

National Institutes of Health (dkNET pilot grant: DK097771)

  • Marcus M Seldin

National Institutes of Health (UCLA Intercampus Medical Genetics Training Program: T32GM008243)

  • Timothy M Moore

National Institutes of Health (U54: DK120342)

  • Andrea L Hevener

National Institutes of Health (R01: DK109724)

  • Andrea L Hevener

National Institutes of Health (P30: DK063491)

  • Andrea L Hevener

National Institutes of Health (R01: DK125354)

  • Zhenqi Zhou

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal research was approved by the UCLA IACUC, where dare and procedures described in detail here: 10.1126/scitranslmed.aax8096

Copyright

© 2022, Velez et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,593
    views
  • 447
    downloads
  • 18
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Leandro M Velez
  2. Cassandra Van
  3. Timothy M Moore
  4. Zhenqi Zhou
  5. Casey Johnson
  6. Andrea L Hevener
  7. Marcus M Seldin
(2022)
Genetic variation of putative myokine signaling is dominated by biologic sex and sex hormones
eLife 11:e76887.
https://doi.org/10.7554/eLife.76887

Share this article

https://doi.org/10.7554/eLife.76887

Further reading

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Ana Patrícia Graça, Vadim Nikitushkin ... Gerald Lackner
    Research Article

    Mycofactocin is a redox cofactor essential for the alcohol metabolism of mycobacteria. While the biosynthesis of mycofactocin is well established, the gene mftG, which encodes an oxidoreductase of the glucose-methanol-choline superfamily, remained functionally uncharacterized. Here, we show that MftG enzymes are almost exclusively found in genomes containing mycofactocin biosynthetic genes and are present in 75% of organisms harboring these genes. Gene deletion experiments in Mycolicibacterium smegmatis demonstrated a growth defect of the ∆mftG mutant on ethanol as a carbon source, accompanied by an arrest of cell division reminiscent of mild starvation. Investigation of carbon and cofactor metabolism implied a defect in mycofactocin reoxidation. Cell-free enzyme assays and respirometry using isolated cell membranes indicated that MftG acts as a mycofactocin dehydrogenase shuttling electrons toward the respiratory chain. Transcriptomics studies also indicated remodeling of redox metabolism to compensate for a shortage of redox equivalents. In conclusion, this work closes an important knowledge gap concerning the mycofactocin system and adds a new pathway to the intricate web of redox reactions governing the metabolism of mycobacteria.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Santi Mestre-Fos, Lucas Ferguson ... Jamie HD Cate
    Research Article

    Stem cell differentiation involves a global increase in protein synthesis to meet the demands of specialized cell types. However, the molecular mechanisms underlying this translational burst and the involvement of initiation factors remains largely unknown. Here, we investigate the role of eukaryotic initiation factor 3 (eIF3) in early differentiation of human pluripotent stem cell (hPSC)-derived neural progenitor cells (NPCs). Using Quick-irCLIP and alternative polyadenylation (APA) Seq, we show eIF3 crosslinks predominantly with 3’ untranslated region (3’-UTR) termini of multiple mRNA isoforms, adjacent to the poly(A) tail. Furthermore, we find that eIF3 engagement at 3’-UTR ends is dependent on polyadenylation. High eIF3 crosslinking at 3’-UTR termini of mRNAs correlates with high translational activity, as determined by ribosome profiling, but not with translational efficiency. The results presented here show that eIF3 engages with 3’-UTR termini of highly translated mRNAs, likely reflecting a general rather than specific regulatory function of eIF3, and supporting a role of mRNA circularization in the mechanisms governing mRNA translation.