Alternation emerges as a multi-modal strategy for turbulent odor navigation

  1. Nicola Rigolli
  2. Gautam Reddy
  3. Agnese Seminara  Is a corresponding author
  4. Massimo Vergassola  Is a corresponding author
  1. University of Genova, Italy
  2. Harvard University, United States
  3. University of Genoa, Italy
  4. CNRS, PSL Research University, France

Abstract

Foraging mammals exhibit a familiar yet poorly characterized phenomenon, 'alternation', a pause to sniff in the air preceded by the animal rearing on its hind legs or raising its head. Rodents spontaneously alternate in the presence of airflow, suggesting that alternation serves an important role during plume-tracking. To test this hypothesis, we combine fully-resolved simulations of turbulent odor transport and Bellman optimization methods for decision-making under partial observability. We show that an agent trained to minimize search time in a realistic odor plume exhibits extensive alternation together with the characteristic cast-and-surge behavior observed in insects. Alternation is linked with casting and occurs more frequently far downwind of the source, where the likelihood of detecting airborne cues is higher relative to ground cues. Casting and alternation emerge as complementary tools for effective exploration with sparse cues. A model based on marginal value theory captures the interplay between casting, surging and alternation.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting file. The dataset with the simulation results has been made public at https://zenodo.org/record/6538177#.Yqrl_5BByJE

Article and author information

Author details

  1. Nicola Rigolli

    Department of Physics, University of Genova, Genova, Italy
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0734-2105
  2. Gautam Reddy

    NSF-Simons Center for Mathematical and Statistical Analysis of Biology, Harvard University, Cambridge, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1276-9613
  3. Agnese Seminara

    Department of Civil, Chemical and Environmental Engineering, University of Genoa, Genoa, Italy
    For correspondence
    agnese.seminara@unige.it
    Competing interests
    Agnese Seminara, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5633-8180
  4. Massimo Vergassola

    CNRS, PSL Research University, Paris, France
    For correspondence
    massimo.vergassola@phys.ens.fr
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7212-8244

Funding

National Science Foundation (1764269)

  • Gautam Reddy

European Research Council (101002724)

  • Agnese Seminara

Air Force Office of Scientific Research (FA8655-20-1-7028)

  • Agnese Seminara

NIH Office of the Director (R01DC018789)

  • Agnese Seminara

National Science Foundation (PHY-1748958)

  • Massimo Vergassola

Gordon and Betty Moore Foundation (2919.02)

  • Gautam Reddy

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Rigolli et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,174
    views
  • 282
    downloads
  • 10
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nicola Rigolli
  2. Gautam Reddy
  3. Agnese Seminara
  4. Massimo Vergassola
(2022)
Alternation emerges as a multi-modal strategy for turbulent odor navigation
eLife 11:e76989.
https://doi.org/10.7554/eLife.76989

Share this article

https://doi.org/10.7554/eLife.76989

Further reading

    1. Physics of Living Systems
    Alex James, Franca Buelow ... Ann Brower
    Short Report

    We use data from 30 countries and find that the more women in a discipline, the lower quality the research in that discipline is evaluated to be and the lower the funding success rate is. This affects men and women, and is robust to age, number of research outputs, and bibliometric measures where such data are available. Our work builds on others’ findings that women’s work is valued less, regardless of who performs that work.

    1. Microbiology and Infectious Disease
    2. Physics of Living Systems
    Tingting Yang, Marko S Chavez ... Mohamed Y El-Naggar
    Research Article

    Filamentous multicellular cable bacteria perform centimeter-scale electron transport in a process that couples oxidation of an electron donor (sulfide) in deeper sediment to the reduction of an electron acceptor (oxygen or nitrate) near the surface. While this electric metabolism is prevalent in both marine and freshwater sediments, detailed electronic measurements of the conductivity previously focused on the marine cable bacteria (Candidatus Electrothrix), rather than freshwater cable bacteria, which form a separate genus (Candidatus Electronema) and contribute essential geochemical roles in freshwater sediments. Here, we characterize the electron transport characteristics of Ca. Electronema cable bacteria from Southern California freshwater sediments. Current–voltage measurements of intact cable filaments bridging interdigitated electrodes confirmed their persistent conductivity under a controlled atmosphere and the variable sensitivity of this conduction to air exposure. Electrostatic and conductive atomic force microscopies mapped out the characteristics of the cell envelope’s nanofiber network, implicating it as the conductive pathway in a manner consistent with previous findings in marine cable bacteria. Four-probe measurements of microelectrodes addressing intact cables demonstrated nanoampere currents up to 200 μm lengths at modest driving voltages, allowing us to quantify the nanofiber conductivity at 0.1 S/cm for freshwater cable bacteria filaments under our measurement conditions. Such a high conductivity can support the remarkable sulfide-to-oxygen electrical currents mediated by cable bacteria in sediments. These measurements expand the knowledgebase of long-distance electron transport to the freshwater niche while shedding light on the underlying conductive network of cable bacteria.