Structure of Mycobacterium tuberculosis Cya, an evolutionary ancestor of the mammalian membrane adenylyl cyclases

  1. Ved Mehta
  2. Basavraj Khanppnavar
  3. Dina Schuster
  4. Ilayda Kantarci
  5. Irene Vercellino
  6. Angela Kosturanova
  7. Tarun Iype
  8. Sasa Stefanic
  9. Paola Picotti
  10. Volodymyr M. Korkhov  Is a corresponding author
  1. Paul Scherrer Institute, Switzerland
  2. ETH Zurich, Switzerland
  3. University of Zurich, Switzerland

Abstract

Mycobacterium tuberculosis adenylyl cyclase (AC) Rv1625c / Cya is an evolutionary ancestor of the mammalian membrane ACs and a model system for studies of their structure and function. Although the vital role of ACs in cellular signaling is well established, the function of their transmembrane (TM) regions remains unknown. Here we describe the cryo-EM structure of Cya bound to a stabilizing nanobody at 3.6 Å resolution. The TM helices 1-5 form a structurally conserved domain that facilitates the assembly of the helical and catalytic domains. The TM region contains discrete pockets accessible from the extracellular and cytosolic side of the membrane. Neutralization of the negatively charged extracellular pocket Ex1 destabilizes the cytosolic helical domain and reduces the catalytic activity of the enzyme. The TM domain acts as a functional component of Cya, guiding the assembly of the catalytic domain and providing the means for direct regulation of catalytic activity in response to extracellular ligands.

Data availability

The atomic coordinates and structure factors have been deposited in the Protein Data Bank (7YZ9, 7YZI, 7YZK); the density maps have been deposited in the Electron Microscopy Data Bank (EMD-14388, EMD-14389). The mass spectrometry data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD033826. All other data are available in the main text or the supplementary materials.

The following data sets were generated

Article and author information

Author details

  1. Ved Mehta

    Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  2. Basavraj Khanppnavar

    Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  3. Dina Schuster

    Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6611-8237
  4. Ilayda Kantarci

    Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  5. Irene Vercellino

    Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  6. Angela Kosturanova

    Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  7. Tarun Iype

    Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  8. Sasa Stefanic

    Institute of Parasitology, University of Zurich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7367-1831
  9. Paola Picotti

    Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  10. Volodymyr M. Korkhov

    Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen, Switzerland
    For correspondence
    volodymyr.korkhov@psi.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0962-9433

Funding

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (150665)

  • Volodymyr M. Korkhov

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (176992)

  • Volodymyr M. Korkhov

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (184951)

  • Volodymyr M. Korkhov

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Mehta et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,849
    views
  • 466
    downloads
  • 8
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ved Mehta
  2. Basavraj Khanppnavar
  3. Dina Schuster
  4. Ilayda Kantarci
  5. Irene Vercellino
  6. Angela Kosturanova
  7. Tarun Iype
  8. Sasa Stefanic
  9. Paola Picotti
  10. Volodymyr M. Korkhov
(2022)
Structure of Mycobacterium tuberculosis Cya, an evolutionary ancestor of the mammalian membrane adenylyl cyclases
eLife 11:e77032.
https://doi.org/10.7554/eLife.77032

Share this article

https://doi.org/10.7554/eLife.77032

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Kristina Ehring, Sophia Friederike Ehlers ... Kay Grobe
    Research Article

    The Sonic hedgehog (Shh) signaling pathway controls embryonic development and tissue homeostasis after birth. This requires regulated solubilization of dual-lipidated, firmly plasma membrane-associated Shh precursors from producing cells. Although it is firmly established that the resistance-nodulation-division transporter Dispatched (Disp) drives this process, it is less clear how lipidated Shh solubilization from the plasma membrane is achieved. We have previously shown that Disp promotes proteolytic solubilization of Shh from its lipidated terminal peptide anchors. This process, termed shedding, converts tightly membrane-associated hydrophobic Shh precursors into delipidated soluble proteins. We show here that Disp-mediated Shh shedding is modulated by a serum factor that we identify as high-density lipoprotein (HDL). In addition to serving as a soluble sink for free membrane cholesterol, HDLs also accept the cholesterol-modified Shh peptide from Disp. The cholesteroylated Shh peptide is necessary and sufficient for Disp-mediated transfer because artificially cholesteroylated mCherry associates with HDL in a Disp-dependent manner, whereas an N-palmitoylated Shh variant lacking C-cholesterol does not. Disp-mediated Shh transfer to HDL is completed by proteolytic processing of the palmitoylated N-terminal membrane anchor. In contrast to dual-processed soluble Shh with moderate bioactivity, HDL-associated N-processed Shh is highly bioactive. We propose that the purpose of generating different soluble forms of Shh from the dual-lipidated precursor is to tune cellular responses in a tissue-type and time-specific manner.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Gina Partipilo, Yang Gao ... Benjamin K Keitz
    Feature Article

    Troubleshooting is an important part of experimental research, but graduate students rarely receive formal training in this skill. In this article, we describe an initiative called Pipettes and Problem Solving that we developed to teach troubleshooting skills to graduate students at the University of Texas at Austin. An experienced researcher presents details of a hypothetical experiment that has produced unexpected results, and students have to propose new experiments that will help identify the source of the problem. We also provide slides and other resources that can be used to facilitate problem solving and teach troubleshooting skills at other institutions.