Heritability and cross-species comparisons of human cortical functional organization asymmetry

  1. Bin Wan  Is a corresponding author
  2. Şeyma Bayrak
  3. Ting Xu
  4. H Lina Schaare
  5. Richard AI Bethlehem
  6. Boris C Bernhardt
  7. Sofie Louise Valk  Is a corresponding author
  1. Max Planck Institute for Human Cognitive and Brain Sciences, Germany
  2. Child Mind Institute, United States
  3. University of Cambridge, United Kingdom
  4. McGill University, Canada

Abstract

The human cerebral cortex is symmetrically organized along large-scale axes but also presents inter-hemispheric differences in structure and function. The quantified contralateral homologous difference, i.e., asymmetry, is a key feature of the human brain left-right axis supporting functional processes, such as language. Here, we assessed whether the asymmetry of cortical functional organization is heritable and phylogenetically conserved between humans and macaques. Our findings indicate asymmetric organization along an axis describing a functional trajectory from perceptual/action to abstract cognition. Whereas language network showed leftward asymmetric organization, frontoparietal network showed rightward asymmetric organization in humans. These asymmetries were heritable in humans and showed a similar spatial distribution with macaques, in the case of intra-hemispheric asymmetry of functional hierarchy. This suggests (phylo)genetic conservation. However, both language and frontoparietal networks showed a qualitatively larger asymmetry in humans relative to macaques. Overall, our findings suggest a genetic basis for asymmetry in intrinsic functional organization, linked to higher-order cognitive functions uniquely developed in humans.

Data availability

All human data analyzed in this manuscript were obtained from the open-access HCP youngadult sample (HCP; www.humanconnectome.org/), UK Biobank (UKB,https://www.ukbiobank.ac.uk/). Macaque data came from PRIME-DE(http://fcon_1000.projects.nitrc.org/indi/indiPRIME.html). Full statistical scripts can be found at https://bit.ly/3sAJ1bP.

The following previously published data sets were used

Article and author information

Author details

  1. Bin Wan

    Otto Hahn Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
    For correspondence
    wanb.psych@outlook.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9077-3354
  2. Şeyma Bayrak

    Otto Hahn Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Ting Xu

    Child Mind Institute, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. H Lina Schaare

    Otto Hahn Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Richard AI Bethlehem

    Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0714-0685
  6. Boris C Bernhardt

    McConnell Brain Imaging Centre, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9256-6041
  7. Sofie Louise Valk

    Otto Hahn Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
    For correspondence
    valk@cbs.mpg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2998-6849

Funding

Max Planck Gesellschaft

  • Sofie Louise Valk

Sick Kids Foundation (NI17-039)

  • Boris C Bernhardt

National Sciences and Engineering Research Council of Canada (Discovery-1304413)

  • Boris C Bernhardt

Canadian Institute of Health Research (FDN154298)

  • Boris C Bernhardt

Azrieli Center for Autism Research

  • Boris C Bernhardt

Canada First Research Excellence Fund

  • Boris C Bernhardt
  • Sofie Louise Valk

International Max Planck Research School on Neuroscience of Communication: Function, Structure, and Plasticity

  • Bin Wan

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The current research complies with all relevant ethical regulations as set by The Independent Research Ethics Committee at the Medical Faculty of the Heinrich-Heine-University of Duesseldorf (study number 2018-317).

Copyright

© 2022, Wan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,279
    views
  • 797
    downloads
  • 26
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Bin Wan
  2. Şeyma Bayrak
  3. Ting Xu
  4. H Lina Schaare
  5. Richard AI Bethlehem
  6. Boris C Bernhardt
  7. Sofie Louise Valk
(2022)
Heritability and cross-species comparisons of human cortical functional organization asymmetry
eLife 11:e77215.
https://doi.org/10.7554/eLife.77215

Share this article

https://doi.org/10.7554/eLife.77215

Further reading

    1. Neuroscience
    Magdalena Ziółkowska, Narges Sotoudeh ... Kasia Radwanska
    Research Article

    The ability to extinguish contextual fear in a changing environment is crucial for animal survival. Recent data support the role of the thalamic nucleus reuniens (RE) and its projections to the dorsal hippocampal CA1 area (RE→dCA1) in this process. However, it remains poorly understood how RE impacts dCA1 neurons during contextual fear extinction (CFE). Here, we reveal that the RE→dCA1 pathway contributes to the extinction of contextual fear by affecting CFE-induced molecular remodeling of excitatory synapses. Anatomical tracing and chemogenetic manipulation in mice demonstrate that RE neurons form synapses and regulate synaptic transmission in the stratum oriens (SO) and lacunosum-moleculare (SLM) of the dCA1 area, but not in the stratum radiatum (SR). We also observe CFE-specific structural changes of excitatory synapses and expression of the synaptic scaffold protein, PSD-95, in both strata innervated by RE, but not in SR. Interestingly, only the changes in SLM are specific for the dendrites innervated by RE. To further support the role of the RE→dCA1 projection in CFE, we demonstrate that brief chemogenetic inhibition of the RE→dCA1 pathway during a CFE session persistently impairs the formation of CFE memory and CFE-induced changes of PSD-95 levels in SLM. Thus, our data indicate that RE participates in CFE by regulating CFE-induced molecular remodeling of dCA1 synapses.

    1. Neuroscience
    Scott Isherwood, Sarah A Kemp ... Birte Forstmann
    Research Article

    This study investigates the functional network underlying response inhibition in the human brain, particularly the role of the basal ganglia in successful action cancellation. Functional magnetic resonance imaging (fMRI) approaches have frequently used the stop-signal task to examine this network. We merge five such datasets, using a novel aggregatory method allowing the unification of raw fMRI data across sites. This meta-analysis, along with other recent aggregatory fMRI studies, does not find evidence for the innervation of the hyperdirect or indirect cortico-basal-ganglia pathways in successful response inhibition. What we do find, is large subcortical activity profiles for failed stop trials. We discuss possible explanations for the mismatch of findings between the fMRI results presented here and results from other research modalities that have implicated nodes of the basal ganglia in successful inhibition. We also highlight the substantial effect smoothing can have on the conclusions drawn from task-specific general linear models. First and foremost, this study presents a proof of concept for meta-analytical methods that enable the merging of extensive, unprocessed, or unreduced datasets. It demonstrates the significant potential that open-access data sharing can offer to the research community. With an increasing number of datasets being shared publicly, researchers will have the ability to conduct meta-analyses on more than just summary data.