Flexible and efficient simulation-based inference for models of decision-making

  1. Jan Boelts  Is a corresponding author
  2. Jan-Matthis Lueckmann
  3. Richard Gao
  4. Jakob H Macke
  1. University of Tübingen, Germany

Abstract

Inferring parameters of computational models that capture experimental data is a central task in cognitive neuroscience. Bayesian statistical inference methods usually require the ability to evaluate the likelihood of the model—however, for many models of interest in cognitive neuroscience, the associated likelihoods cannot be computed efficiently. Simulation-based inference (SBI) offers a solution to this problem by only requiring access to simulations produced by the model. Previously, Fengler et al. introduced Likelihood Approximation Networks (LAN, Fengler et al., 2021) which make it possible to apply SBI to models of decision-making, but require billions of simulations for training. Here, we provide a new SBI method that is substantially more simulation-efficient. Our approach, Mixed Neural Likelihood Estimation (MNLE), trains neural density estimators on model simulations to emulate the simulator, and is designed to capture both the continuous (e.g., reaction times) and discrete (choices) data of decision-making models. The likelihoods of the emulator can then be used to perform Bayesian parameter inference on experimental data using standard approximate inference methods like Markov Chain Monte Carlo sampling. We demonstrate MNLE on two variants of the drift-diffusion model (DDM) and show that it is substantially more efficient than LANs: MNLE achieves similar likelihood accuracy with six orders of magnitude fewer training simulations, and is significantly more accurate than LANs when both are trained with the same budget. This enables researchers to perform SBI on custom-tailored models of decision-making, leading to fast iteration of model design for scientific discovery.

Data availability

We implemented MNLE as part of the open source package for SBI, sbi, available at https://github. com/mackelab/sbi. Code for reproducing the results presented here, and tutorials on how to apply MNLE to other simulators using sbi can be found at https://github.com/mackelab/mnle-for-ddms.

Article and author information

Author details

  1. Jan Boelts

    University of Tübingen, Tübingen, Germany
    For correspondence
    jan.boelts@uni-tuebingen.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4979-7092
  2. Jan-Matthis Lueckmann

    University of Tübingen, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Richard Gao

    University of Tübingen, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5916-6433
  4. Jakob H Macke

    University of Tübingen, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5154-8912

Funding

Deutsche Forschungsgemeinschaft (SFB 1233)

  • Jan-Matthis Lueckmann
  • Jakob H Macke

Deutsche Forschungsgemeinschaft (SPP 2041)

  • Jan Boelts
  • Jakob H Macke

Deutsche Forschungsgemeinschaft (Germany's Excellence Strategy MLCoE)

  • Jan Boelts
  • Jan-Matthis Lueckmann
  • Richard Gao
  • Jakob H Macke

Bundesministerium für Bildung und Forschung (ADIMEM,FKZ 01IS18052 A-D)

  • Jan-Matthis Lueckmann
  • Jakob H Macke

HORIZON EUROPE Marie Sklodowska-Curie Actions (101030918)

  • Richard Gao

Bundesministerium für Bildung und Forschung (Tübingen AI Center,FKZ 01IS18039A)

  • Jan Boelts
  • Jakob H Macke

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Boelts et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,486
    views
  • 680
    downloads
  • 24
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jan Boelts
  2. Jan-Matthis Lueckmann
  3. Richard Gao
  4. Jakob H Macke
(2022)
Flexible and efficient simulation-based inference for models of decision-making
eLife 11:e77220.
https://doi.org/10.7554/eLife.77220

Share this article

https://doi.org/10.7554/eLife.77220

Further reading

    1. Cancer Biology
    2. Neuroscience
    Jeffrey Barr, Austin Walz ... Paola D Vermeer
    Research Article

    Cancer patients often experience changes in mental health, prompting an exploration into whether nerves infiltrating tumors contribute to these alterations by impacting brain functions. Using a mouse model for head and neck cancer and neuronal tracing, we show that tumor-infiltrating nerves connect to distinct brain areas. The activation of this neuronal circuitry altered behaviors (decreased nest-building, increased latency to eat a cookie, and reduced wheel running). Tumor-infiltrating nociceptor neurons exhibited heightened calcium activity and brain regions receiving these neural projections showed elevated Fos as well as increased calcium responses compared to non-tumor-bearing counterparts. The genetic elimination of nociceptor neurons decreased brain Fos expression and mitigated the behavioral alterations induced by the presence of the tumor. While analgesic treatment restored nesting and cookie test behaviors, it did not fully restore voluntary wheel running indicating that pain is not the exclusive driver of such behavioral shifts. Unraveling the interaction between the tumor, infiltrating nerves, and the brain is pivotal to developing targeted interventions to alleviate the mental health burdens associated with cancer.

    1. Neuroscience
    Xinlin Hou, Peng Zhang ... Dandan Zhang
    Research Article

    Emotional responsiveness in neonates, particularly their ability to discern vocal emotions, plays an evolutionarily adaptive role in human communication and adaptive behaviors. The developmental trajectory of emotional sensitivity in neonates is crucial for understanding the foundations of early social-emotional functioning. However, the precise onset of this sensitivity and its relationship with gestational age (GA) remain subjects of investigation. In a study involving 120 healthy neonates categorized into six groups based on their GA (ranging from 35 and 40 weeks), we explored their emotional responses to vocal stimuli. These stimuli encompassed disyllables with happy and neutral prosodies, alongside acoustically matched nonvocal control sounds. The assessments occurred during natural sleep states using the odd-ball paradigm and event-related potentials. The results reveal a distinct developmental change at 37 weeks GA, marking the point at which neonates exhibit heightened perceptual acuity for emotional vocal expressions. This newfound ability is substantiated by the presence of the mismatch response, akin to an initial form of adult mismatch negativity, elicited in response to positive emotional vocal prosody. Notably, this perceptual shift’s specificity becomes evident when no such discrimination is observed in acoustically matched control sounds. Neonates born before 37 weeks GA do not display this level of discrimination ability. This developmental change has important implications for our understanding of early social-emotional development, highlighting the role of gestational age in shaping early perceptual abilities. Moreover, while these findings introduce the potential for a valuable screening tool for conditions like autism, characterized by atypical social-emotional functions, it is important to note that the current data are not yet robust enough to fully support this application. This study makes a substantial contribution to the broader field of developmental neuroscience and holds promise for future research on early intervention in neurodevelopmental disorders.