Flexible and efficient simulation-based inference for models of decision-making

  1. Jan Boelts  Is a corresponding author
  2. Jan-Matthis Lueckmann
  3. Richard Gao
  4. Jakob H Macke
  1. University of Tübingen, Germany

Abstract

Inferring parameters of computational models that capture experimental data is a central task in cognitive neuroscience. Bayesian statistical inference methods usually require the ability to evaluate the likelihood of the model—however, for many models of interest in cognitive neuroscience, the associated likelihoods cannot be computed efficiently. Simulation-based inference (SBI) offers a solution to this problem by only requiring access to simulations produced by the model. Previously, Fengler et al. introduced Likelihood Approximation Networks (LAN, Fengler et al., 2021) which make it possible to apply SBI to models of decision-making, but require billions of simulations for training. Here, we provide a new SBI method that is substantially more simulation-efficient. Our approach, Mixed Neural Likelihood Estimation (MNLE), trains neural density estimators on model simulations to emulate the simulator, and is designed to capture both the continuous (e.g., reaction times) and discrete (choices) data of decision-making models. The likelihoods of the emulator can then be used to perform Bayesian parameter inference on experimental data using standard approximate inference methods like Markov Chain Monte Carlo sampling. We demonstrate MNLE on two variants of the drift-diffusion model (DDM) and show that it is substantially more efficient than LANs: MNLE achieves similar likelihood accuracy with six orders of magnitude fewer training simulations, and is significantly more accurate than LANs when both are trained with the same budget. This enables researchers to perform SBI on custom-tailored models of decision-making, leading to fast iteration of model design for scientific discovery.

Data availability

We implemented MNLE as part of the open source package for SBI, sbi, available at https://github. com/mackelab/sbi. Code for reproducing the results presented here, and tutorials on how to apply MNLE to other simulators using sbi can be found at https://github.com/mackelab/mnle-for-ddms.

Article and author information

Author details

  1. Jan Boelts

    University of Tübingen, Tübingen, Germany
    For correspondence
    jan.boelts@uni-tuebingen.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4979-7092
  2. Jan-Matthis Lueckmann

    University of Tübingen, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Richard Gao

    University of Tübingen, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5916-6433
  4. Jakob H Macke

    University of Tübingen, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5154-8912

Funding

Deutsche Forschungsgemeinschaft (SFB 1233)

  • Jan-Matthis Lueckmann
  • Jakob H Macke

Deutsche Forschungsgemeinschaft (SPP 2041)

  • Jan Boelts
  • Jakob H Macke

Deutsche Forschungsgemeinschaft (Germany's Excellence Strategy MLCoE)

  • Jan Boelts
  • Jan-Matthis Lueckmann
  • Richard Gao
  • Jakob H Macke

Bundesministerium für Bildung und Forschung (ADIMEM,FKZ 01IS18052 A-D)

  • Jan-Matthis Lueckmann
  • Jakob H Macke

HORIZON EUROPE Marie Sklodowska-Curie Actions (101030918)

  • Richard Gao

Bundesministerium für Bildung und Forschung (Tübingen AI Center,FKZ 01IS18039A)

  • Jan Boelts
  • Jakob H Macke

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Boelts et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,486
    views
  • 680
    downloads
  • 24
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jan Boelts
  2. Jan-Matthis Lueckmann
  3. Richard Gao
  4. Jakob H Macke
(2022)
Flexible and efficient simulation-based inference for models of decision-making
eLife 11:e77220.
https://doi.org/10.7554/eLife.77220

Share this article

https://doi.org/10.7554/eLife.77220

Further reading

    1. Neuroscience
    Marine Schimel, Ta-Chu Kao, Guillaume Hennequin
    Research Article

    During delayed ballistic reaches, motor areas consistently display movement-specific activity patterns prior to movement onset. It is unclear why these patterns arise: while they have been proposed to seed an initial neural state from which the movement unfolds, recent experiments have uncovered the presence and necessity of ongoing inputs during movement, which may lessen the need for careful initialization. Here, we modeled the motor cortex as an input-driven dynamical system, and we asked what the optimal way to control this system to perform fast delayed reaches is. We find that delay-period inputs consistently arise in an optimally controlled model of M1. By studying a variety of network architectures, we could dissect and predict the situations in which it is beneficial for a network to prepare. Finally, we show that optimal input-driven control of neural dynamics gives rise to multiple phases of preparation during reach sequences, providing a novel explanation for experimentally observed features of monkey M1 activity in double reaching.

    1. Neuroscience
    Jing Jun Wong, Alessandro Bongioanni ... Bolton KH Chau
    Research Article

    Humans make irrational decisions in the presence of irrelevant distractor options. There is little consensus on whether decision making is facilitated or impaired by the presence of a highly rewarding distractor, or whether the distractor effect operates at the level of options’ component attributes rather than at the level of their overall value. To reconcile different claims, we argue that it is important to consider the diversity of people’s styles of decision making and whether choice attributes are combined in an additive or multiplicative way. Employing a multi-laboratory dataset investigating the same experimental paradigm, we demonstrated that people used a mix of both approaches and the extent to which approach was used varied across individuals. Critically, we identified that this variability was correlated with the distractor effect during decision making. Individuals who tended to use a multiplicative approach to compute value, showed a positive distractor effect. In contrast, a negative distractor effect (divisive normalisation) was prominent in individuals tending towards an additive approach. Findings suggest that the distractor effect is related to how value is constructed, which in turn may be influenced by task and subject specificities. This concurs with recent behavioural and neuroscience findings that multiple distractor effects co-exist.