Control of craniofacial development by the collagen receptor, discoidin domain receptor 2

  1. Fatma F Mohamed
  2. Chunxi Ge
  3. Shawn A Hallett
  4. Alec C Bancroft
  5. Randy T Cowling
  6. Noriaki Ono
  7. Abdul-Aziz Binrayes
  8. Barry Greenberg
  9. Benjamin D Levi
  10. Vesa M Kaartinen
  11. Renny T Franceschi  Is a corresponding author
  1. University of Michigan-Ann Arbor, United States
  2. The University of Texas Southwestern Medical Center, United States
  3. University of California, San Diego, United States
  4. The University of Texas Health Science Center at Houston, United States
  5. King Saud University, Saudi Arabia

Abstract

Development of the craniofacial skeleton requires interactions between progenitor cells and the collagen-rich extracellular matrix (ECM). The mediators of these interactions are not well-defined. Mutations in the discoidin domain receptor 2 gene (DDR2), which encodes a non-integrin collagen receptor, are associated with human craniofacial abnormalities, such as midface hypoplasia and open fontanels. However, the exact role of this gene in craniofacial morphogenesis is not known. As will be shown, Ddr2-deficient mice exhibit defects in craniofacial bones including impaired calvarial growth and frontal suture formation, cranial base hypoplasia due to aberrant chondrogenesis and delayed ossification at growth plate synchondroses. These defects were associated with abnormal collagen fibril organization, chondrocyte proliferation and polarization. As established by localization and lineage tracing studies, Ddr2 is expressed in progenitor cell-enriched craniofacial regions including sutures and synchondrosis resting zone cartilage, overlapping with GLI1+ cells, and contributing to chondrogenic and osteogenic lineages during skull growth. Tissue-specific knockouts further established the requirement for Ddr2 in GLI+ skeletal progenitors and chondrocytes. These studies establish a cellular basis for regulation of craniofacial morphogenesis by this understudied collagen receptor and suggest that DDR2 is necessary for proper collagen organization, chondrocyte proliferation and orientation.

Data availability

All data generated or analysed during this study are included in the manuscript and source data files

Article and author information

Author details

  1. Fatma F Mohamed

    Department of Periodontics and Oral Medicine, University of Michigan-Ann Arbor, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Chunxi Ge

    Department of Periodontics and Oral Medicine, University of Michigan-Ann Arbor, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Shawn A Hallett

    Department of Periodontics and Oral Medicine, University of Michigan-Ann Arbor, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1472-7502
  4. Alec C Bancroft

    Department of Surgery, The University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Randy T Cowling

    Division of Cardiovascular Medicine, University of California, San Diego, San Diego, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Noriaki Ono

    Department of Diagnostic and Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3771-8230
  7. Abdul-Aziz Binrayes

    Department of Prosthetic Dental Sciences, King Saud University, Riyadh, Saudi Arabia
    Competing interests
    The authors declare that no competing interests exist.
  8. Barry Greenberg

    Division of Cardiovascular Medicine, University of California, San Diego, San Diego, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Benjamin D Levi

    Department of Surgery, The University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Vesa M Kaartinen

    Department of Biologic and Materials Science, University of Michigan-Ann Arbor, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Renny T Franceschi

    Department of Periodontics and Oral Medicine, University of Michigan-Ann Arbor, Ann Arbor, United States
    For correspondence
    rennyf@umich.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1405-2541

Funding

National Institute of Dental and Craniofacial Research (R01DE11723)

  • Renny T Franceschi

National Institute of Dental and Craniofacial Research (R21DE029012)

  • Renny T Franceschi

National Institute of Dental and Craniofacial Research (R01DE029465)

  • Renny T Franceschi

U.S. Department of Defense (PR190899)

  • Renny T Franceschi

National Institute of Arthritis and Musculoskeletal and Skin Diseases (R01AR078324)

  • Benjamin D Levi

National Institute of Arthritis and Musculoskeletal and Skin Diseases (P30AR069620)

  • Renny T Franceschi

Ministry of Higher Education and Scientific Research

  • Fatma F Mohamed

King Saud University

  • Abdul-Aziz Binrayes

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict compliance with the Guidelines for the Care and Use of Animals for Scientific Research. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (PRO9305, PRO10975) of the University of Michigan.

Copyright

© 2023, Mohamed et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,402
    views
  • 268
    downloads
  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Fatma F Mohamed
  2. Chunxi Ge
  3. Shawn A Hallett
  4. Alec C Bancroft
  5. Randy T Cowling
  6. Noriaki Ono
  7. Abdul-Aziz Binrayes
  8. Barry Greenberg
  9. Benjamin D Levi
  10. Vesa M Kaartinen
  11. Renny T Franceschi
(2023)
Control of craniofacial development by the collagen receptor, discoidin domain receptor 2
eLife 12:e77257.
https://doi.org/10.7554/eLife.77257

Share this article

https://doi.org/10.7554/eLife.77257

Further reading

    1. Cell Biology
    Giuliana Giamundo, Daniela Intartaglia ... Ivan Conte
    Research Article

    Endosomes have emerged as major signaling hubs where different internalized ligand–receptor complexes are integrated and the outcome of signaling pathways are organized to regulate the strength and specificity of signal transduction events. Ezrin, a major membrane–actin linker that assembles and coordinates macromolecular signaling complexes at membranes, has emerged recently as an important regulator of lysosomal function. Here, we report that endosomal-localized EGFR/Ezrin complex interacts with and triggers the inhibition of the Tuberous Sclerosis Complex (TSC complex) in response to EGF stimuli. This is regulated through activation of the AKT signaling pathway. Loss of Ezrin was not sufficient to repress TSC complex by EGF and culminated in translocation of TSC complex to lysosomes triggering suppression of mTORC1 signaling. Overexpression of constitutively active EZRINT567D is sufficient to relocalize TSC complex to the endosomes and reactivate mTORC1. Our findings identify EZRIN as a critical regulator of autophagy via TSC complex in response to EGF stimuli and establish the central role of early endosomal signaling in the regulation of mTORC1. Consistently, Medaka fish deficient for Ezrin exhibit defective endo-lysosomal pathway, attributable to the compromised EGFR/AKT signaling, ultimately leading to retinal degeneration. Our data identify a pivotal mechanism of endo-lysosomal signaling involving Ezrin and its associated EGFR/TSC complex, which are essential for retinal function.

    1. Cell Biology
    Kelsey R Baron, Samantha Oviedo ... R Luke Wiseman
    Research Article

    Excessive mitochondrial fragmentation is associated with the pathologic mitochondrial dysfunction implicated in the pathogenesis of etiologically diverse diseases, including many neurodegenerative disorders. The integrated stress response (ISR) – comprising the four eIF2α kinases PERK, GCN2, PKR, and HRI – is a prominent stress-responsive signaling pathway that regulates mitochondrial morphology and function in response to diverse types of pathologic insult. This suggests that pharmacologic activation of the ISR represents a potential strategy to mitigate pathologic mitochondrial fragmentation associated with human disease. Here, we show that pharmacologic activation of the ISR kinases HRI or GCN2 promotes adaptive mitochondrial elongation and prevents mitochondrial fragmentation induced by the calcium ionophore ionomycin. Further, we show that pharmacologic activation of the ISR reduces mitochondrial fragmentation and restores basal mitochondrial morphology in patient fibroblasts expressing the pathogenic D414V variant of the pro-fusion mitochondrial GTPase MFN2 associated with neurological dysfunctions, including ataxia, optic atrophy, and sensorineural hearing loss. These results identify pharmacologic activation of ISR kinases as a potential strategy to prevent pathologic mitochondrial fragmentation induced by disease-relevant chemical and genetic insults, further motivating the pursuit of highly selective ISR kinase-activating compounds as a therapeutic strategy to mitigate mitochondrial dysfunction implicated in diverse human diseases.