Control of craniofacial development by the collagen receptor, discoidin domain receptor 2

  1. Fatma F Mohamed
  2. Chunxi Ge
  3. Shawn A Hallett
  4. Alec C Bancroft
  5. Randy T Cowling
  6. Noriaki Ono
  7. Abdul-Aziz Binrayes
  8. Barry Greenberg
  9. Benjamin Levi
  10. Vesa M Kaartinen
  11. Renny T Franceschi  Is a corresponding author
  1. University of Michigan-Ann Arbor, United States
  2. The University of Texas Southwestern Medical Center, United States
  3. University of California, San Diego, United States
  4. The University of Texas Health Science Center at Houston, United States
  5. King Saud University, Saudi Arabia

Abstract

Development of the craniofacial skeleton requires interactions between progenitor cells and the collagen-rich extracellular matrix (ECM). The mediators of these interactions are not well-defined. Mutations in the discoidin domain receptor 2 gene (DDR2), which encodes a non-integrin collagen receptor, are associated with human craniofacial abnormalities, such as midface hypoplasia and open fontanels. However, the exact role of this gene in craniofacial morphogenesis is not known. As will be shown, Ddr2-deficient mice exhibit defects in craniofacial bones including impaired calvarial growth and frontal suture formation, cranial base hypoplasia due to aberrant chondrogenesis and delayed ossification at growth plate synchondroses. These defects were associated with abnormal collagen fibril organization, chondrocyte proliferation and polarization. As established by localization and lineage tracing studies, Ddr2 is expressed in progenitor cell-enriched craniofacial regions including sutures and synchondrosis resting zone cartilage, overlapping with GLI1+ cells, and contributing to chondrogenic and osteogenic lineages during skull growth. Tissue-specific knockouts further established the requirement for Ddr2 in GLI+ skeletal progenitors and chondrocytes. These studies establish a cellular basis for regulation of craniofacial morphogenesis by this understudied collagen receptor and suggest that DDR2 is necessary for proper collagen organization, chondrocyte proliferation and orientation.

Data availability

All data generated or analysed during this study are included in the manuscript and source data files

Article and author information

Author details

  1. Fatma F Mohamed

    Department of Periodontics and Oral Medicine, University of Michigan-Ann Arbor, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Chunxi Ge

    Department of Periodontics and Oral Medicine, University of Michigan-Ann Arbor, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Shawn A Hallett

    Department of Periodontics and Oral Medicine, University of Michigan-Ann Arbor, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1472-7502
  4. Alec C Bancroft

    Department of Surgery, The University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Randy T Cowling

    Division of Cardiovascular Medicine, University of California, San Diego, San Diego, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Noriaki Ono

    Department of Diagnostic and Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3771-8230
  7. Abdul-Aziz Binrayes

    Department of Prosthetic Dental Sciences, King Saud University, Riyadh, Saudi Arabia
    Competing interests
    The authors declare that no competing interests exist.
  8. Barry Greenberg

    Division of Cardiovascular Medicine, University of California, San Diego, San Diego, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Benjamin Levi

    Department of Surgery, The University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Vesa M Kaartinen

    Department of Biologic and Materials Science, University of Michigan-Ann Arbor, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Renny T Franceschi

    Department of Periodontics and Oral Medicine, University of Michigan-Ann Arbor, Ann Arbor, United States
    For correspondence
    rennyf@umich.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1405-2541

Funding

National Institute of Dental and Craniofacial Research (R01DE11723)

  • Renny T Franceschi

National Institute of Dental and Craniofacial Research (R21DE029012)

  • Renny T Franceschi

National Institute of Dental and Craniofacial Research (R01DE029465)

  • Renny T Franceschi

U.S. Department of Defense (PR190899)

  • Renny T Franceschi

National Institute of Arthritis and Musculoskeletal and Skin Diseases (R01AR078324)

  • Benjamin Levi

National Institute of Arthritis and Musculoskeletal and Skin Diseases (P30AR069620)

  • Renny T Franceschi

Ministry of Higher Education and Scientific Research

  • Fatma F Mohamed

King Saud University

  • Abdul-Aziz Binrayes

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict compliance with the Guidelines for the Care and Use of Animals for Scientific Research. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (PRO9305, PRO10975) of the University of Michigan.

Reviewing Editor

  1. Yi-Ping Li, Tulane University, United States

Publication history

  1. Received: January 21, 2022
  2. Accepted: January 18, 2023
  3. Accepted Manuscript published: January 19, 2023 (version 1)
  4. Accepted Manuscript updated: January 24, 2023 (version 2)

Copyright

© 2023, Mohamed et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 288
    Page views
  • 69
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Fatma F Mohamed
  2. Chunxi Ge
  3. Shawn A Hallett
  4. Alec C Bancroft
  5. Randy T Cowling
  6. Noriaki Ono
  7. Abdul-Aziz Binrayes
  8. Barry Greenberg
  9. Benjamin Levi
  10. Vesa M Kaartinen
  11. Renny T Franceschi
(2023)
Control of craniofacial development by the collagen receptor, discoidin domain receptor 2
eLife 12:e77257.
https://doi.org/10.7554/eLife.77257
  1. Further reading

Further reading

    1. Cancer Biology
    2. Cell Biology
    Kimberly J Morgan, Karen Doggett ... Joan K Heath
    Research Article Updated

    The nucleoporin (NUP) ELYS, encoded by AHCTF1, is a large multifunctional protein with essential roles in nuclear pore assembly and mitosis. Using both larval and adult zebrafish models of hepatocellular carcinoma (HCC), in which the expression of an inducible mutant kras transgene (krasG12V) drives hepatocyte-specific hyperplasia and liver enlargement, we show that reducing ahctf1 gene dosage by 50% markedly decreases liver volume, while non-hyperplastic tissues are unaffected. We demonstrate that in the context of cancer, ahctf1 heterozygosity impairs nuclear pore formation, mitotic spindle assembly, and chromosome segregation, leading to DNA damage and activation of a Tp53-dependent transcriptional programme that induces cell death and cell cycle arrest. Heterozygous expression of both ahctf1 and ranbp2 (encoding a second nucleoporin), or treatment of heterozygous ahctf1 larvae with the nucleocytoplasmic transport inhibitor, Selinexor, completely blocks krasG12V-driven hepatocyte hyperplasia. Gene expression analysis of patient samples in the liver hepatocellular carcinoma (LIHC) dataset in The Cancer Genome Atlas shows that high expression of one or more of the transcripts encoding the 10 components of the NUP107–160 subcomplex, which includes AHCTF1, is positively correlated with worse overall survival. These results provide a strong and feasible rationale for the development of novel cancer therapeutics that target ELYS function and suggest potential avenues for effective combinatorial treatments.

    1. Cell Biology
    2. Immunology and Inflammation
    Ana J Caetano, Yushi Redhead ... Paul T Sharpe
    Research Article Updated

    The interplay among different cells in a tissue is essential for maintaining homeostasis. Although disease states have been traditionally attributed to individual cell types, increasing evidence and new therapeutic options have demonstrated the primary role of multicellular functions to understand health and disease, opening new avenues to understand pathogenesis and develop new treatment strategies. We recently described the cellular composition and dynamics of the human oral mucosa; however, the spatial arrangement of cells is needed to better understand a morphologically complex tissue. Here, we link single-cell RNA sequencing, spatial transcriptomics, and high-resolution multiplex fluorescence in situ hybridisation to characterise human oral mucosa in health and oral chronic inflammatory disease. We deconvolved expression for resolution enhancement of spatial transcriptomic data and defined highly specialised epithelial and stromal compartments describing location-specific immune programs. Furthermore, we spatially mapped a rare pathogenic fibroblast population localised in a highly immunogenic region, responsible for lymphocyte recruitment through CXCL8 and CXCL10 and with a possible role in pathological angiogenesis through ALOX5AP. Collectively, our study provides a comprehensive reference for the study of oral chronic disease pathogenesis.