Human influenza virus infection elicits distinct patterns of monocyte and dendritic cell mobilization in blood and the nasopharynx

  1. Sindhu Vangeti
  2. Sara Falck-Jones
  3. Meng Yu
  4. Björn Österberg
  5. Sang Liu
  6. Muhammad Asghar
  7. Klara Sondén
  8. Clare Paterson
  9. Penn Whitley
  10. Jan Albert
  11. Niclas Johansson
  12. Anna Färnert
  13. Anna Smed-Sörensen  Is a corresponding author
  1. Karolinska Institute, Sweden
  2. SomaLogic, United States
  3. Boulder Bioconsulting Inc, United States

Abstract

During respiratory viral infections, the precise roles of monocytes and dendritic cells (DCs) in the nasopharynx in limiting infection and influencing disease severity are incompletely described. We studied circulating and nasopharyngeal monocytes and DCs in healthy controls (HC) and in patients with mild to moderate infections (primarily influenza A virus, IAV). As compared to HCs, patients with acute IAV infection displayed reduced DC but increased intermediate monocytes frequencies in blood, and an accumulation of most monocyte and DC subsets in the nasopharynx. IAV patients had more mature monocytes and DCs in the nasopharynx, and higher levels of TNFα, IL-6 and IFNα in plasma and the nasopharynx than HCs. In blood, monocytes were the most frequent cellular source of TNFα during IAV infection and remained responsive to additional stimulation with TLR7/8L. Immune responses in older patients skewed towards increased monocyte frequencies rather than DCs, suggesting a contributory role for monocytes in disease severity. In patients with other respiratory virus infections, we observed changes in monocyte and DC frequencies in the nasopharynx distinct from IAV patients, while differences in blood were more similar across infection groups. Using SomaScan, a high-throughput aptamer-based assay to study proteomic changes between patients and HCs, we found differential expression of innate immunity-related proteins in plasma and nasopharyngeal secretions of IAV and SARS-CoV-2 patients. Together, our findings demonstrate tissue-specific and pathogen-specific patterns of monocyte and DC function during human respiratory viral infections and highlight the importance of comparative investigations in blood and the nasopharynx.

Data availability

Source Data files have been provided for figures 1-7 and Appendix 2_Table 2 as separate excel files.

Article and author information

Author details

  1. Sindhu Vangeti

    Department of Medicine Solna, Karolinska Institute, Stockholm, Sweden
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3404-6878
  2. Sara Falck-Jones

    Department of Medicine Solna, Karolinska Institute, Stockholm, Sweden
    Competing interests
    No competing interests declared.
  3. Meng Yu

    Department of Medicine Solna, Karolinska Institute, Stockholm, Sweden
    Competing interests
    No competing interests declared.
  4. Björn Österberg

    Department of Medicine Solna, Karolinska Institute, Stockholm, Sweden
    Competing interests
    No competing interests declared.
  5. Sang Liu

    Department of Medicine Solna, Karolinska Institute, Stockholm, Sweden
    Competing interests
    No competing interests declared.
  6. Muhammad Asghar

    Department of Medicine Solna, Karolinska Institute, Stockholm, Sweden
    Competing interests
    No competing interests declared.
  7. Klara Sondén

    Department of Medicine Solna, Karolinska Institute, Stockholm, Sweden
    Competing interests
    No competing interests declared.
  8. Clare Paterson

    SomaLogic, Boulder, United States
    Competing interests
    Clare Paterson, is an employee and stockholder of SomaLogic Inc..
  9. Penn Whitley

    Boulder Bioconsulting Inc, Boulder, United States
    Competing interests
    No competing interests declared.
  10. Jan Albert

    Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9020-0521
  11. Niclas Johansson

    Department of Medicine Solna, Karolinska Institute, Stockholm, Sweden
    Competing interests
    No competing interests declared.
  12. Anna Färnert

    Department of Medicine Solna, Karolinska Institute, Stockholm, Sweden
    Competing interests
    No competing interests declared.
  13. Anna Smed-Sörensen

    Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
    For correspondence
    anna.smed.sorensen@ki.se
    Competing interests
    Anna Smed-Sörensen, is a consultant to Astra-Zeneca on studies not related to the present study..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6966-7039

Funding

Vetenskapsrådet

  • Anna Smed-Sörensen

Hjärt-Lungfonden

  • Anna Smed-Sörensen

Bill and Melinda Gates Foundation

  • Anna Smed-Sörensen

Barncancerfonden

  • Anna Smed-Sörensen

Karolinska Institutet

  • Anna Smed-Sörensen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Informed consent was obtained from all patients and volunteers following verbal and written information. The study was approved by the Swedish Ethical Review Authority (No. 2015/1949-31/4) and performed according to the Declaration of Helsinki.

Copyright

© 2023, Vangeti et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,203
    views
  • 246
    downloads
  • 16
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

Share this article

https://doi.org/10.7554/eLife.77345

Further reading

    1. Biochemistry and Chemical Biology
    2. Immunology and Inflammation
    Pavla Nedbalová, Nikola Kaislerova ... Tomáš Doležal
    Research Article

    During parasitoid wasp infection, activated immune cells of Drosophila melanogaster larvae release adenosine to conserve nutrients for immune response. S-adenosylmethionine (SAM) is a methyl group donor for most methylations in the cell and is synthesized from methionine and ATP. After methylation, SAM is converted to S-adenosylhomocysteine, which is further metabolized to adenosine and homocysteine. Here, we show that the SAM transmethylation pathway is up-regulated during immune cell activation and that the adenosine produced by this pathway in immune cells acts as a systemic signal to delay Drosophila larval development and ensure sufficient nutrient supply to the immune system. We further show that the up-regulation of the SAM transmethylation pathway and the efficiency of the immune response also depend on the recycling of adenosine back to ATP by adenosine kinase and adenylate kinase. We therefore hypothesize that adenosine may act as a sensitive sensor of the balance between cell activity, represented by the sum of methylation events in the cell, and nutrient supply. If the supply of nutrients is insufficient for a given activity, adenosine may not be effectively recycled back into ATP and may be pushed out of the cell to serve as a signal to demand more nutrients.

    1. Immunology and Inflammation
    2. Structural Biology and Molecular Biophysics
    Colleen A Maillie, Kiana Golden ... Marco Mravic
    Research Article

    A potent class of HIV-1 broadly neutralizing antibodies (bnAbs) targets the envelope glycoprotein’s membrane proximal exposed region (MPER) through a proposed mechanism where hypervariable loops embed into lipid bilayers and engage headgroup moieties alongside the epitope. We address the feasibility and determinant molecular features of this mechanism using multi-scale modeling. All-atom simulations of 4E10, PGZL1, 10E8, and LN01 docked onto HIV-like membranes consistently form phospholipid complexes at key complementarity-determining region loop sites, solidifying that stable and specific lipid interactions anchor bnAbs to membrane surfaces. Ancillary protein-lipid contacts reveal surprising contributions from antibody framework regions. Coarse-grained simulations effectively capture antibodies embedding into membranes. Simulations estimating protein-membrane interaction strength for PGZL1 variants along an inferred maturation pathway show bilayer affinity is evolved and correlates with neutralization potency. The modeling demonstrated here uncovers insights into lipid participation in antibodies’ recognition of membrane proteins and highlights antibody features to prioritize in vaccine design.