The cellular architecture of memory modules in Drosophila supports stochastic input integration

  1. Omar A Hafez
  2. Benjamin Escribano
  3. Rouven L Ziegler
  4. Jan J Hirtz
  5. Ernst Niebur  Is a corresponding author
  6. Jan Pielage  Is a corresponding author
  1. Johns Hopkins University, United States
  2. University of Kaiserslautern, Germany

Abstract

The ability to associate neutral stimuli with valence information and to store these associations as memories forms the basis for decision making. To determine the underlying computational principles, we build a realistic computational model of a central decision module within the Drosophila mushroom body (MB), the fly's center for learning and memory. Our model combines the electron microscopy-based architecture of one MB output neuron (MBON-α3), the synaptic connectivity of its 948 presynaptic Kenyon cells (KCs), and its membrane properties obtained from patch-clamp recordings. We show that this neuron is electrotonically compact and that synaptic input corresponding to simulated odor input robustly drives its spiking behavior. Therefore, sparse innervation by KCs can efficiently control and modulate MBON activity in response to learning with minimal requirements on the specificity of synaptic localization. This architecture allows efficient storage of large numbers of memories using the flexible stochastic connectivity of the circuit.

Data availability

All data generated or analysed in this study are included in the manuscript.All simulation files and the code and data files needed to replicate the simulations are available as a permanent and freely accessible data collection at the Johns Hopkins University Data Archive:https://doi.org/10.7281/T1/HRK27V.This includes the simulation code itself (python), the structural EM reconstruction of MBON-alpha3 (swc), the EM reconstruction of the related MBON used to model the axon and synaptic terminal structures (swc), the synapse locations as coordinate data (json), and the synapse locations by MBON section (json). Parameter values for model definition and individual simulations are specified within the code files and outlined in each figure legend where appropriate.

Article and author information

Author details

  1. Omar A Hafez

    Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Benjamin Escribano

    Department of Biology, University of Kaiserslautern, Kaiserslautern, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Rouven L Ziegler

    Department of Biology, University of Kaiserslautern, Kaiserslautern, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3050-7692
  4. Jan J Hirtz

    Department of Biology, University of Kaiserslautern, Kaiserslautern, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Ernst Niebur

    Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, United States
    For correspondence
    niebur@jhu.edu
    Competing interests
    The authors declare that no competing interests exist.
  6. Jan Pielage

    Department of Biology, University of Kaiserslautern, Kaiserslautern, Germany
    For correspondence
    pielage@bio.uni-kl.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5115-5884

Funding

National Institutes of Health (R01DC020123)

  • Ernst Niebur

National Institutes of Health (R01DA040990)

  • Ernst Niebur

National Institutes of Health (R01EY027544)

  • Ernst Niebur

National Institutes of Health (Medical Scientist Training Program 708 Training Grant T32GM136651)

  • Ernst Niebur

National Science Foundation (1835202)

  • Ernst Niebur

Bundesministerium für Bildung und Forschung (FKZ 01GQ2105)

  • Jan Pielage

Deutsche Forschungsgemeinschaft (INST 248/293-1)

  • Jan Pielage

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Albert Cardona, University of Cambridge, United Kingdom

Publication history

  1. Received: February 3, 2022
  2. Accepted: March 9, 2023
  3. Accepted Manuscript published: March 14, 2023 (version 1)
  4. Accepted Manuscript updated: March 14, 2023 (version 2)
  5. Accepted Manuscript updated: March 15, 2023 (version 3)

Copyright

© 2023, Hafez et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 384
    Page views
  • 96
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Omar A Hafez
  2. Benjamin Escribano
  3. Rouven L Ziegler
  4. Jan J Hirtz
  5. Ernst Niebur
  6. Jan Pielage
(2023)
The cellular architecture of memory modules in Drosophila supports stochastic input integration
eLife 12:e77578.
https://doi.org/10.7554/eLife.77578

Further reading

    1. Neuroscience
    Tarek Amer, Lila Davachi
    Review Article

    Pattern separation, or the process by which highly similar stimuli or experiences in memory are represented by non-overlapping neural ensembles, has typically been ascribed to processes supported by the hippocampus. Converging evidence from a wide range of studies, however, suggests that pattern separation is a multistage process supported by a network of brain regions. Based on this evidence, considered together with related findings from the interference resolution literature, we propose the ‘cortico-hippocampal pattern separation’ (CHiPS) framework, which asserts that brain regions involved in cognitive control play a significant role in pattern separation. Particularly, these regions may contribute to pattern separation by (1) resolving interference in sensory regions that project to the hippocampus, thus regulating its cortical input, or (2) directly modulating hippocampal processes in accordance with task demands. Considering recent interest in how hippocampal operations are modulated by goal states likely represented and regulated by extra-hippocampal regions, we argue that pattern separation is similarly supported by neocortical–hippocampal interactions.

    1. Medicine
    2. Neuroscience
    Christian Büchel
    Review Article

    Chronic, or persistent pain affects more than 10% of adults in the general population. This makes it one of the major physical and mental health care problems. Although pain is an important acute warning signal that allows the organism to take action before tissue damage occurs, it can become persistent and its role as a warning signal thereby inadequate. Although per definition, pain can only be labeled as persistent after 3 months, the trajectory from acute to persistent pain is likely to be determined very early and might even start at the time of injury. The biopsychosocial model has revolutionized our understanding of chronic pain and paved the way for psychological treatments for persistent pain, which routinely outperform other forms of treatment. This suggests that psychological processes could also be important in shaping the very early trajectory from acute to persistent pain and that targeting these processes could prevent the development of persistent pain. In this review, we develop an integrative model and suggest novel interventions during early pain trajectories, based on predictions from this model.