The cellular architecture of memory modules in Drosophila supports stochastic input integration

  1. Omar A Hafez
  2. Benjamin Escribano
  3. Rouven L Ziegler
  4. Jan J Hirtz
  5. Ernst Niebur  Is a corresponding author
  6. Jan Pielage  Is a corresponding author
  1. Johns Hopkins University, United States
  2. University of Kaiserslautern, Germany

Abstract

The ability to associate neutral stimuli with valence information and to store these associations as memories forms the basis for decision making. To determine the underlying computational principles, we build a realistic computational model of a central decision module within the Drosophila mushroom body (MB), the fly's center for learning and memory. Our model combines the electron microscopy-based architecture of one MB output neuron (MBON-α3), the synaptic connectivity of its 948 presynaptic Kenyon cells (KCs), and its membrane properties obtained from patch-clamp recordings. We show that this neuron is electrotonically compact and that synaptic input corresponding to simulated odor input robustly drives its spiking behavior. Therefore, sparse innervation by KCs can efficiently control and modulate MBON activity in response to learning with minimal requirements on the specificity of synaptic localization. This architecture allows efficient storage of large numbers of memories using the flexible stochastic connectivity of the circuit.

Data availability

All data generated or analysed in this study are included in the manuscript.All simulation files and the code and data files needed to replicate the simulations are available as a permanent and freely accessible data collection at the Johns Hopkins University Data Archive:https://doi.org/10.7281/T1/HRK27V.This includes the simulation code itself (python), the structural EM reconstruction of MBON-alpha3 (swc), the EM reconstruction of the related MBON used to model the axon and synaptic terminal structures (swc), the synapse locations as coordinate data (json), and the synapse locations by MBON section (json). Parameter values for model definition and individual simulations are specified within the code files and outlined in each figure legend where appropriate.

Article and author information

Author details

  1. Omar A Hafez

    Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Benjamin Escribano

    Department of Biology, University of Kaiserslautern, Kaiserslautern, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Rouven L Ziegler

    Department of Biology, University of Kaiserslautern, Kaiserslautern, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3050-7692
  4. Jan J Hirtz

    Department of Biology, University of Kaiserslautern, Kaiserslautern, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Ernst Niebur

    Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, United States
    For correspondence
    niebur@jhu.edu
    Competing interests
    The authors declare that no competing interests exist.
  6. Jan Pielage

    Department of Biology, University of Kaiserslautern, Kaiserslautern, Germany
    For correspondence
    pielage@bio.uni-kl.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5115-5884

Funding

National Institutes of Health (R01DC020123)

  • Ernst Niebur

National Institutes of Health (R01DA040990)

  • Ernst Niebur

National Institutes of Health (R01EY027544)

  • Ernst Niebur

National Institutes of Health (Medical Scientist Training Program 708 Training Grant T32GM136651)

  • Ernst Niebur

National Science Foundation (1835202)

  • Ernst Niebur

Bundesministerium für Bildung und Forschung (FKZ 01GQ2105)

  • Jan Pielage

Deutsche Forschungsgemeinschaft (INST 248/293-1)

  • Jan Pielage

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Hafez et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,835
    views
  • 226
    downloads
  • 5
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Omar A Hafez
  2. Benjamin Escribano
  3. Rouven L Ziegler
  4. Jan J Hirtz
  5. Ernst Niebur
  6. Jan Pielage
(2023)
The cellular architecture of memory modules in Drosophila supports stochastic input integration
eLife 12:e77578.
https://doi.org/10.7554/eLife.77578

Share this article

https://doi.org/10.7554/eLife.77578

Further reading

    1. Neuroscience
    Agnieszka Glica, Katarzyna Wasilewska ... Katarzyna Jednoróg
    Research Article

    The neural noise hypothesis of dyslexia posits an imbalance between excitatory and inhibitory (E/I) brain activity as an underlying mechanism of reading difficulties. This study provides the first direct test of this hypothesis using both electroencephalography (EEG) power spectrum measures in 120 Polish adolescents and young adults (60 with dyslexia, 60 controls) and glutamate (Glu) and gamma-aminobutyric acid (GABA) concentrations from magnetic resonance spectroscopy (MRS) at 7T MRI scanner in half of the sample. Our results, supported by Bayesian statistics, show no evidence of E/I balance differences between groups, challenging the hypothesis that cortical hyperexcitability underlies dyslexia. These findings suggest that alternative mechanisms must be explored and highlight the need for further research into the E/I balance and its role in neurodevelopmental disorders.

    1. Neuroscience
    David C Williams, Amanda Chu ... Michael A McDannald
    Research Advance

    Recognizing and responding to threat cues is essential to survival. Freezing is a predominant threat behavior in rats. We have recently shown that a threat cue can organize diverse behaviors beyond freezing, including locomotion (Chu et al., 2024). However, that experimental design was complex, required many sessions, and had rats receive many foot shock presentations. Moreover, the findings were descriptive. Here, we gave female and male Long Evans rats cue light illumination paired or unpaired with foot shock (8 total) in a conditioned suppression setting, using a range of shock intensities (0.15, 0.25, 0.35, or 0.50 mA). We found that conditioned suppression was only observed at higher foot shock intensities (0.35 mA and 0.50 mA). We constructed comprehensive temporal ethograms by scoring 22,272 frames across 12 behavior categories in 200-ms intervals around cue light illumination. The 0.50 mA and 0.35 mA shock-paired visual cues suppressed reward seeking, rearing, and scaling, as well as light-directed rearing and light-directed scaling. The shock-paired visual cue further elicited locomotion and freezing. Linear discriminant analyses showed that ethogram data could accurately classify rats into paired and unpaired groups. Using complete ethogram data produced superior classification compared to behavior subsets, including an Immobility subset featuring freezing. The results demonstrate diverse threat behaviors – in a short and simple procedure – containing sufficient information to distinguish the visual fear conditioning status of individual rats.