The giant mimivirus 1.2 Mb genome is elegantly organized into a 30 nm diameter helical protein shield

  1. Alejandro Villalta
  2. Alain Schmitt
  3. Leandro F Estrozi
  4. Emmanuelle RJ Quemin
  5. Jean-Marie Alempic
  6. Audrey Lartigue
  7. Vojtěch Pražák
  8. Lucid Belmudes
  9. Daven Vasishtan
  10. Agathe MG Colmant
  11. Flora A Honoré
  12. Yohann Couté
  13. Kay Grünewald
  14. Chantal Abergel  Is a corresponding author
  1. Aix-Marseille University, CNRS-AMU UMR7256, France
  2. Univ. Grenoble Alpes, CNRS, CEA,, France
  3. University of Hamburg, Germany
  4. Université Grenoble Alpes, France

Abstract

Mimivirus is the prototype of the Mimiviridae family of giant dsDNA viruses. Little is known about the organization of the 1.2 Mb genome inside the membrane-limited nucleoid filling the ~0.5 µm icosahedral capsids. Cryo-electron microscopy, cryo-electron tomography and proteomics revealed that it is encased into a ~30 nm diameter helical protein shell surprisingly composed of two GMC-type oxidoreductases, which also form the glycosylated fibrils decorating the capsid. The genome is arranged in 5- or 6-start left-handed super-helices, with each DNA-strand lining the central channel. This luminal channel of the nucleoprotein fiber is wide enough to accommodate oxidative stress proteins and RNA polymerase subunits identified by proteomics. Such elegant supramolecular organization would represent a remarkable evolutionary strategy for packaging and protecting the genome, in a state ready for immediate transcription upon unwinding in the host cytoplasm. The parsimonious use of the same protein in two unrelated substructures of the virion is unexpected for a giant virus with thousand genes at its disposal.

Data availability

Mimivirus reunion genome has been deposited under the following accession number: BankIt2382307 Seq1 MW004169.3D reconstruction maps and the corresponding PDB have been deposited to EMDB (Deposition number Cl1a: 7YX4, EMD-14354; Cl1a focused refined: D_1292117739; Cl3a: 7YX5, EMD-14355; Cl2: 7YX3, EMD-14353).The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD021585 and 10.6019/PXD021585.The tomograms have been deposited in EMPIAR under accession number 1131 and tomograms video are provided with the article.

The following data sets were generated

Article and author information

Author details

  1. Alejandro Villalta

    Aix-Marseille University, CNRS-AMU UMR7256, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Alain Schmitt

    Aix-Marseille University, CNRS-AMU UMR7256, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3565-8692
  3. Leandro F Estrozi

    Univ. Grenoble Alpes, CNRS, CEA,, Grenoble, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Emmanuelle RJ Quemin

    Centre for Structural Systems Biology, University of Hamburg, Hamburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Jean-Marie Alempic

    Aix-Marseille University, CNRS-AMU UMR7256, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Audrey Lartigue

    Aix-Marseille University, CNRS-AMU UMR7256, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Vojtěch Pražák

    Centre for Structural Systems Biology, University of Hamburg, Hamburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8149-218X
  8. Lucid Belmudes

    Institut de Biosciences et Biotechnologies de Grenoble, Université Grenoble Alpes, Grenoble, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Daven Vasishtan

    Centre for Structural Systems Biology, University of Hamburg, Hamburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Agathe MG Colmant

    Aix-Marseille University, CNRS-AMU UMR7256, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2004-4073
  11. Flora A Honoré

    Aix-Marseille University, CNRS-AMU UMR7256, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0390-8730
  12. Yohann Couté

    Institut de Biosciences et Biotechnologies de Grenoble, Université Grenoble Alpes, Grenoble, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3896-6196
  13. Kay Grünewald

    Centre for Structural Systems Biology, University of Hamburg, Hamburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  14. Chantal Abergel

    Aix-Marseille University, CNRS-AMU UMR7256, Marseille, France
    For correspondence
    Chantal.Abergel@igs.cnrs-mrs.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1875-4049

Funding

European Research Council (832601)

  • Chantal Abergel

Agence Nationale de la Recherche (ANR-16-CE11-0033-01)

  • Chantal Abergel

Agence Nationale de la Recherche (ANR-10-INBS-08-01)

  • Yohann Couté

Agence Nationale de la Recherche (ANR-17-EURE-0003)

  • Yohann Couté

Wellcome Trust (107806/Z/15/Z)

  • Kay Grünewald

Deutsche Forschungsgemeinschaft (INST 152/772-1|152/774-1|152/775-1|152/776-1)

  • Kay Grünewald

Alexander von Humboldt-Stiftung (FRA 1200789 HFST-P)

  • Emmanuelle RJ Quemin

Agence Nationale de la Recherche (ANR-10-INBS-04)

  • Chantal Abergel

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Villalta et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,460
    views
  • 969
    downloads
  • 15
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alejandro Villalta
  2. Alain Schmitt
  3. Leandro F Estrozi
  4. Emmanuelle RJ Quemin
  5. Jean-Marie Alempic
  6. Audrey Lartigue
  7. Vojtěch Pražák
  8. Lucid Belmudes
  9. Daven Vasishtan
  10. Agathe MG Colmant
  11. Flora A Honoré
  12. Yohann Couté
  13. Kay Grünewald
  14. Chantal Abergel
(2022)
The giant mimivirus 1.2 Mb genome is elegantly organized into a 30 nm diameter helical protein shield
eLife 11:e77607.
https://doi.org/10.7554/eLife.77607

Share this article

https://doi.org/10.7554/eLife.77607

Further reading

    1. Microbiology and Infectious Disease
    Dhaval Ghone, Edward L Evans ... Aussie Suzuki
    Research Article

    Virion Infectivity Factor (Vif) of the Human Immunodeficiency Virus type 1 (HIV-1) targets and degrades cellular APOBEC3 proteins, key regulators of intrinsic and innate antiretroviral immune responses, thereby facilitating HIV-1 infection. While Vif’s role in degrading APOBEC3G is well-studied, Vif is also known to cause cell cycle arrest, but the detailed nature of Vif’s effects on the cell cycle has yet to be delineated. In this study, we employed high-temporal resolution single-cell live imaging and super-resolution microscopy to monitor individual cells during Vif-induced cell cycle arrest. Our findings reveal that Vif does not affect the G2/M boundary as previously thought. Instead, Vif triggers a unique and robust pseudo-metaphase arrest, distinct from the mild prometaphase arrest induced by Vpr. During this arrest, chromosomes align properly and form the metaphase plate, but later lose alignment, resulting in polar chromosomes. Notably, Vif, unlike Vpr, significantly reduces the levels of both Protein Phosphatase 1 (PP1) and 2 A (PP2A) at kinetochores, which regulate chromosome-microtubule interactions. These results unveil a novel role for Vif in kinetochore regulation that governs the spatial organization of chromosomes during mitosis.

    1. Computational and Systems Biology
    2. Microbiology and Infectious Disease
    Ruihan Dong, Rongrong Liu ... Cheng Zhu
    Research Article

    Antimicrobial peptides (AMPs) are attractive candidates to combat antibiotic resistance for their capability to target biomembranes and restrict a wide range of pathogens. It is a daunting challenge to discover novel AMPs due to their sparse distributions in a vast peptide universe, especially for peptides that demonstrate potencies for both bacterial membranes and viral envelopes. Here, we establish a de novo AMP design framework by bridging a deep generative module and a graph-encoding activity regressor. The generative module learns hidden ‘grammars’ of AMP features and produces candidates sequentially pass antimicrobial predictor and antiviral classifiers. We discovered 16 bifunctional AMPs and experimentally validated their abilities to inhibit a spectrum of pathogens in vitro and in animal models. Notably, P076 is a highly potent bactericide with the minimal inhibitory concentration of 0.21 μM against multidrug-resistant Acinetobacter baumannii, while P002 broadly inhibits five enveloped viruses. Our study provides feasible means to uncover the sequences that simultaneously encode antimicrobial and antiviral activities, thus bolstering the function spectra of AMPs to combat a wide range of drug-resistant infections.