Mitotically heritable, RNA polymerase II-independent H3K4 dimethylation stimulates INO1 transcriptional memory

  1. Bethany Sump
  2. Donna G Brickner
  3. Agustina D'Urso
  4. Seo Hyun Kim
  5. Jason H Brickner  Is a corresponding author
  1. Northwestern University, United States

Abstract

For some inducible genes, the rate and molecular mechanism of transcriptional activation depends on the prior experiences of the cell. This phenomenon, called epigenetic transcriptional memory, accelerates reactivation and requires both changes in chromatin structure and recruitment of poised RNA Polymerase II (RNAPII) to the promoter. Memory of inositol starvation in budding yeast involves a positive feedback loop between transcription factor-dependent interaction with the nuclear pore complex and histone H3 lysine 4 dimethylation (H3K4me2). While H3K4me2 is essential for recruitment of RNAPII and faster reactivation, RNAPII is not required for H3K4me2. Unlike RNAPII-dependent H3K4me2 associated with transcription, RNAPII-independent H3K4me2 requires Nup100, SET3C, the Leo1 subunit of the Paf1 complex and, upon degradation of an essential transcription factor, is inherited through multiple cell cycles. The writer of this mark (COMPASS) physically interacts with the potential reader (SET3C), suggesting a molecular mechanism for the spreading and re-incorporation of H3K4me2 following DNA replication.

Data availability

The scripts used to analyze the competition experiments are available at https://github.com/jasonbrickner/SeqComp.

Article and author information

Author details

  1. Bethany Sump

    Department of Molecular Biosciences, Northwestern University, Evanston, United States
    Competing interests
    No competing interests declared.
  2. Donna G Brickner

    Department of Molecular Biosciences, Northwestern University, Evanston, United States
    Competing interests
    No competing interests declared.
  3. Agustina D'Urso

    Department of Molecular Biosciences, Northwestern University, Evanston, United States
    Competing interests
    Agustina D'Urso, is affiliated with Arcturus Therapeutics. The author has no financial interests to declare.
  4. Seo Hyun Kim

    Department of Molecular Biosciences, Northwestern University, Evanston, United States
    Competing interests
    No competing interests declared.
  5. Jason H Brickner

    Department of Molecular Biosciences, Northwestern University, Evanston, United States
    For correspondence
    j-brickner@northwestern.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8019-3743

Funding

National Institute of General Medical Sciences (R35 GM136419)

  • Bethany Sump
  • Donna G Brickner
  • Agustina D'Urso
  • Seo Hyun Kim
  • Jason H Brickner

National Institute of General Medical Sciences (R01 GM118712)

  • Bethany Sump
  • Donna G Brickner
  • Agustina D'Urso
  • Seo Hyun Kim
  • Jason H Brickner

National Institute of General Medical Sciences (T32 GM008061)

  • Agustina D'Urso

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Alan G Hinnebusch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, United States

Publication history

  1. Received: February 6, 2022
  2. Preprint posted: February 11, 2022 (view preprint)
  3. Accepted: May 15, 2022
  4. Accepted Manuscript published: May 17, 2022 (version 1)
  5. Version of Record published: May 24, 2022 (version 2)

Copyright

© 2022, Sump et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 979
    Page views
  • 208
    Downloads
  • 4
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Bethany Sump
  2. Donna G Brickner
  3. Agustina D'Urso
  4. Seo Hyun Kim
  5. Jason H Brickner
(2022)
Mitotically heritable, RNA polymerase II-independent H3K4 dimethylation stimulates INO1 transcriptional memory
eLife 11:e77646.
https://doi.org/10.7554/eLife.77646

Further reading

    1. Chromosomes and Gene Expression
    2. Genetics and Genomics
    Anil Kumar Vijjamarri, Xiao Niu ... Alan G Hinnebusch
    Research Article

    Degradation of most yeast mRNAs involves decapping by Dcp1/Dcp2. DEAD-box protein Dhh1 has been implicated as an activator of decapping, in coupling codon non-optimality to enhanced degradation, and as a translational repressor, but its functions in cells are incompletely understood. RNA-Seq analyses coupled with CAGE sequencing of all capped mRNAs revealed increased abundance of hundreds of mRNAs in dcp2Δ cells that appears to result directly from impaired decapping rather than elevated transcription. Interestingly, only a subset of mRNAs requires Dhh1 for targeting by Dcp2, and also generally requires the other decapping activators Pat1, Edc3 or Scd6; whereas most of the remaining transcripts utilize NMD factors for Dcp2-mediated turnover. Neither inefficient translation initiation nor stalled elongation appears to be a major driver of Dhh1-enhanced mRNA degradation. Surprisingly, ribosome profiling revealed that dcp2Δ confers widespread changes in relative translational efficiencies (TEs) that generally favor well-translated mRNAs. Because ribosome biogenesis is reduced while capped mRNA abundance is increased by dcp2&Delta, we propose that an increased ratio of mRNA to ribosomes increases competition among mRNAs for limiting ribosomes to favor efficiently translated mRNAs in dcp2Δ cells. Interestingly, genes involved in respiration or utilization of alternative carbon or nitrogen sources are up-regulated, and both mitochondrial function and cell filamentation are elevated in dcp2Δ cells, suggesting that decapping sculpts gene expression post-transcriptionally to fine-tune metabolic pathways and morphological transitions according to nutrient availability.

    1. Chromosomes and Gene Expression
    2. Genetics and Genomics
    Isabella Horton, Conor J Kelly ... Edward B Chuong
    Research Article Updated

    Regulatory networks underlying innate immunity continually face selective pressures to adapt to new and evolving pathogens. Transposable elements (TEs) can affect immune gene expression as a source of inducible regulatory elements, but the significance of these elements in facilitating evolutionary diversification of innate immunity remains largely unexplored. Here, we investigated the mouse epigenomic response to type II interferon (IFN) signaling and discovered that elements from a subfamily of B2 SINE (B2_Mm2) contain STAT1 binding sites and function as IFN-inducible enhancers. CRISPR deletion experiments in mouse cells demonstrated that a B2_Mm2 element has been co-opted as an enhancer driving IFN-inducible expression of Dicer1. The rodent-specific B2 SINE family is highly abundant in the mouse genome and elements have been previously characterized to exhibit promoter, insulator, and non-coding RNA activity. Our work establishes a new role for B2 elements as inducible enhancer elements that influence mouse immunity, and exemplifies how lineage-specific TEs can facilitate evolutionary turnover and divergence of innate immune regulatory networks.