Prolonged β-adrenergic stimulation disperses ryanodine receptor clusters in cardiomyocytes

  1. Xin Shen  Is a corresponding author
  2. Jonas van den Brink
  3. Anna Bergan-Dahl
  4. Terje R Kolstad
  5. Einar Sjaastad Norden
  6. Yufeng Hou
  7. Martin Laasmaa
  8. Yuriana Aguilar-Sanchez
  9. Ann Pepper Quick
  10. Emil Knut Stenersen Espe
  11. Ivar Sjaastad
  12. Xander HT Wehrens
  13. Andrew G Edwards
  14. Christian Soeller
  15. William Edward Louch  Is a corresponding author
  1. Oslo University Hospital, Norway
  2. Simula Reseach Laboratory, Norway
  3. University of Oslo, Norway
  4. Baylor College of Medicine, United States
  5. University of Exeter, United Kingdom

Abstract

Ryanodine Receptors (RyRs) exhibit dynamic arrangements in cardiomyocytes, and we previously showed that 'dispersion' of RyR clusters disrupts Ca2+ homeostasis during heart failure (HF) (Kolstad et al., eLife, 2018). Here, we investigated whether prolonged β-adrenergic stimulation, a hallmark of HF, promotes RyR cluster dispersion, and examined the underlying mechanisms. We observed that treatment of healthy rat cardiomyocytes with isoproterenol for 1 hour triggered progressive fragmentation of RyR clusters. Pharmacological inhibition of CaMKII reversed these effects, while cluster dispersion was reproduced by specific activation of CaMKII, and in mice with constitutively active Ser2814-RyR. A similar role of protein kinase A (PKA) in promoting RyR cluster fragmentation was established by employing PKA activation or inhibition. Progressive cluster dispersion was linked to declining Ca2+ spark fidelity and magnitude, and slowed release kinetics from Ca2+ propagation between more numerous RyR clusters. In healthy cells, this served to dampen the stimulatory actions of β-adrenergic stimulation over the longer term, and protect against pro-arrhythmic Ca2+ waves. However, during HF, RyR dispersion was linked to impaired Ca2+ release. Thus, RyR localization and function are intimately linked via channel phosphorylation by both CaMKII and PKA which, while finely tuned in healthy cardiomyocytes, underlies impaired cardiac function during pathology.

Data availability

Custom codes used in this study were written in Python, and is available at the public repository https://gitlab.com/louch-group/ryr-tt-correlative-analsyis.

Article and author information

Author details

  1. Xin Shen

    Institute for Experimental Medical Research, Oslo University Hospital, Oslo, Norway
    For correspondence
    xin.shen@medisin.uio.no
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4429-8358
  2. Jonas van den Brink

    Simula Reseach Laboratory, Oslo, Norway
    Competing interests
    The authors declare that no competing interests exist.
  3. Anna Bergan-Dahl

    Institute for Experimental Medical Research, Oslo University Hospital, Oslo, Norway
    Competing interests
    The authors declare that no competing interests exist.
  4. Terje R Kolstad

    Insitute for Experimental Medical Research, Oslo University Hospital, Oslo, Norway
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0589-5689
  5. Einar Sjaastad Norden

    Institute for Experimental Medical Research, Oslo University Hospital, Oslo, Norway
    Competing interests
    The authors declare that no competing interests exist.
  6. Yufeng Hou

    KG Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
    Competing interests
    The authors declare that no competing interests exist.
  7. Martin Laasmaa

    Institute for Experimental Medical Research, Oslo University Hospital, Oslo, Norway
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6663-6947
  8. Yuriana Aguilar-Sanchez

    Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Ann Pepper Quick

    Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Emil Knut Stenersen Espe

    Institute for Experimental Medical Research, Oslo University Hospital, Oslo, Norway
    Competing interests
    The authors declare that no competing interests exist.
  11. Ivar Sjaastad

    Institute for Experimental Medical Research, Oslo University Hospital, Oslo, Norway
    Competing interests
    The authors declare that no competing interests exist.
  12. Xander HT Wehrens

    Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Andrew G Edwards

    Simula Reseach Laboratory, Oslo, Norway
    Competing interests
    The authors declare that no competing interests exist.
  14. Christian Soeller

    Biomedical Physics, University of Exeter, Exeter, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9302-2203
  15. William Edward Louch

    Institute for Experimental Medical Research, Oslo University Hospital, Oslo, Norway
    For correspondence
    w.e.louch@medisin.uio.no
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0511-6112

Funding

Norwegian Research Council

  • Xin Shen
  • William Edward Louch

European Research Council

  • Xin Shen
  • Terje R Kolstad
  • William Edward Louch

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments were performed in accordance with the Norwegian Animal Welfare Act and NIH Guidelines, and were approved by the Ethics Committee of the University of Oslo and the Norwegian animal welfare committee (FOTS ID 20208). The majority of the experiments were performed on adult male Wistar rats (250-350 g) purchased from Janvier Labs (Le Genest-Saint-Isle, France). Rats were group housed at 22{degree sign}C on a 12 h:12 h light-dark cycle, with free access to food and water. Cardiomyocytes isolated from transgenic RyR2-S2814D and RyR2-S2814A mice were provided by the laboratory of Xander Wehren (Baylor College of Medicine, Texas, United States) where experiments were performed in accordance with the Guide for the Care and Use of Laboratory Animals (National Academies Press, 2011) and approved by the Baylor College of Medicine Institutional Animal Care and Use Committee. A total of 64 rats and 6 mice were used in this study.

Copyright

© 2022, Shen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,435
    views
  • 378
    downloads
  • 16
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xin Shen
  2. Jonas van den Brink
  3. Anna Bergan-Dahl
  4. Terje R Kolstad
  5. Einar Sjaastad Norden
  6. Yufeng Hou
  7. Martin Laasmaa
  8. Yuriana Aguilar-Sanchez
  9. Ann Pepper Quick
  10. Emil Knut Stenersen Espe
  11. Ivar Sjaastad
  12. Xander HT Wehrens
  13. Andrew G Edwards
  14. Christian Soeller
  15. William Edward Louch
(2022)
Prolonged β-adrenergic stimulation disperses ryanodine receptor clusters in cardiomyocytes
eLife 11:e77725.
https://doi.org/10.7554/eLife.77725

Share this article

https://doi.org/10.7554/eLife.77725

Further reading

    1. Cell Biology
    Surya Bansi Singh, Shatruhan Singh Rajput ... Deepa Subramanyam
    Research Article Updated

    Aggregation of mutant forms of Huntingtin is the underlying feature of neurodegeneration observed in Huntington’s disorder. In addition to neurons, cellular processes in non-neuronal cell types are also shown to be affected. Cells expressing neurodegeneration–associated mutant proteins show altered uptake of ligands, suggestive of impaired endocytosis, in a manner as yet unknown. Using live cell imaging, we show that clathrin-mediated endocytosis (CME) is affected in Drosophila hemocytes and mammalian cells containing Huntingtin aggregates. This is also accompanied by alterations in the organization of the actin cytoskeleton resulting in increased cellular stiffness. Further, we find that Huntingtin aggregates sequester actin and actin-modifying proteins. Overexpression of Hip1 or Arp3 (actin-interacting proteins) could restore CME and cellular stiffness in cells containing Huntingtin aggregates. Neurodegeneration driven by pathogenic Huntingtin was also rescued upon overexpression of either Hip1 or Arp3 in Drosophila. Examination of other pathogenic aggregates revealed that TDP-43 also displayed defective CME, altered actin organization and increased stiffness, similar to pathogenic Huntingtin. Together, our results point to an intimate connection between dysfunctional CME, actin misorganization and increased cellular stiffness caused by alteration in the local intracellular environment by pathogenic aggregates.

    1. Cell Biology
    2. Developmental Biology
    Yi Sun, Zhe Chen ... Chengtian Zhao
    Short Report

    How cells regulate the size of their organelles remains a fundamental question in cell biology. Cilia, with their simple structure and surface localization, provide an ideal model for investigating organelle size control. However, most studies on cilia length regulation are primarily performed on several single-celled organisms. In contrast, the mechanism of length regulation in cilia across diverse cell types within multicellular organisms remains a mystery. Similar to humans, zebrafish contain diverse types of cilia with variable lengths. Taking advantage of the transparency of zebrafish embryos, we conducted a comprehensive investigation into intraflagellar transport (IFT), an essential process for ciliogenesis. By generating a transgenic line carrying Ift88-GFP transgene, we observed IFT in multiple types of cilia with varying lengths. Remarkably, cilia exhibited variable IFT speeds in different cell types, with longer cilia exhibiting faster IFT speeds. This increased IFT speed in longer cilia is likely not due to changes in common factors that regulate IFT, such as motor selection, BBSome proteins, or tubulin modification. Interestingly, longer cilia in the ear cristae tend to form larger IFT compared to shorter spinal cord cilia. Reducing the size of IFT particles by knocking down Ift88 slowed IFT speed and resulted in the formation of shorter cilia. Our study proposes an intriguing model of cilia length regulation via controlling IFT speed through the modulation of the size of the IFT complex. This discovery may provide further insights into our understanding of how organelle size is regulated in higher vertebrates.