Prolonged β-adrenergic stimulation disperses ryanodine receptor clusters in cardiomyocytes

  1. Xin Shen  Is a corresponding author
  2. Jonas van den Brink
  3. Anna Bergan-Dahl
  4. Terje R Kolstad
  5. Einar Sjaastad Norden
  6. Yufeng Hou
  7. Martin Laasmaa
  8. Yuriana Aguilar-Sanchez
  9. Ann Pepper Quick
  10. Emil Knut Stenersen Espe
  11. Ivar Sjaastad
  12. Xander HT Wehrens
  13. Andrew G Edwards
  14. Christian Soeller
  15. William Edward Louch  Is a corresponding author
  1. Oslo University Hospital, Norway
  2. Simula Reseach Laboratory, Norway
  3. University of Oslo, Norway
  4. Baylor College of Medicine, United States
  5. University of Exeter, United Kingdom

Abstract

Ryanodine Receptors (RyRs) exhibit dynamic arrangements in cardiomyocytes, and we previously showed that 'dispersion' of RyR clusters disrupts Ca2+ homeostasis during heart failure (HF) (Kolstad et al., eLife, 2018). Here, we investigated whether prolonged β-adrenergic stimulation, a hallmark of HF, promotes RyR cluster dispersion, and examined the underlying mechanisms. We observed that treatment of healthy rat cardiomyocytes with isoproterenol for 1 hour triggered progressive fragmentation of RyR clusters. Pharmacological inhibition of CaMKII reversed these effects, while cluster dispersion was reproduced by specific activation of CaMKII, and in mice with constitutively active Ser2814-RyR. A similar role of protein kinase A (PKA) in promoting RyR cluster fragmentation was established by employing PKA activation or inhibition. Progressive cluster dispersion was linked to declining Ca2+ spark fidelity and magnitude, and slowed release kinetics from Ca2+ propagation between more numerous RyR clusters. In healthy cells, this served to dampen the stimulatory actions of β-adrenergic stimulation over the longer term, and protect against pro-arrhythmic Ca2+ waves. However, during HF, RyR dispersion was linked to impaired Ca2+ release. Thus, RyR localization and function are intimately linked via channel phosphorylation by both CaMKII and PKA which, while finely tuned in healthy cardiomyocytes, underlies impaired cardiac function during pathology.

Data availability

Custom codes used in this study were written in Python, and is available at the public repository https://gitlab.com/louch-group/ryr-tt-correlative-analsyis.

Article and author information

Author details

  1. Xin Shen

    Institute for Experimental Medical Research, Oslo University Hospital, Oslo, Norway
    For correspondence
    xin.shen@medisin.uio.no
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4429-8358
  2. Jonas van den Brink

    Simula Reseach Laboratory, Oslo, Norway
    Competing interests
    The authors declare that no competing interests exist.
  3. Anna Bergan-Dahl

    Institute for Experimental Medical Research, Oslo University Hospital, Oslo, Norway
    Competing interests
    The authors declare that no competing interests exist.
  4. Terje R Kolstad

    Insitute for Experimental Medical Research, Oslo University Hospital, Oslo, Norway
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0589-5689
  5. Einar Sjaastad Norden

    Institute for Experimental Medical Research, Oslo University Hospital, Oslo, Norway
    Competing interests
    The authors declare that no competing interests exist.
  6. Yufeng Hou

    KG Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
    Competing interests
    The authors declare that no competing interests exist.
  7. Martin Laasmaa

    Institute for Experimental Medical Research, Oslo University Hospital, Oslo, Norway
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6663-6947
  8. Yuriana Aguilar-Sanchez

    Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Ann Pepper Quick

    Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Emil Knut Stenersen Espe

    Institute for Experimental Medical Research, Oslo University Hospital, Oslo, Norway
    Competing interests
    The authors declare that no competing interests exist.
  11. Ivar Sjaastad

    Institute for Experimental Medical Research, Oslo University Hospital, Oslo, Norway
    Competing interests
    The authors declare that no competing interests exist.
  12. Xander HT Wehrens

    Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Andrew G Edwards

    Simula Reseach Laboratory, Oslo, Norway
    Competing interests
    The authors declare that no competing interests exist.
  14. Christian Soeller

    Biomedical Physics, University of Exeter, Exeter, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9302-2203
  15. William Edward Louch

    Institute for Experimental Medical Research, Oslo University Hospital, Oslo, Norway
    For correspondence
    w.e.louch@medisin.uio.no
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0511-6112

Funding

Norwegian Research Council

  • Xin Shen
  • William Edward Louch

European Research Council

  • Xin Shen
  • Terje R Kolstad
  • William Edward Louch

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments were performed in accordance with the Norwegian Animal Welfare Act and NIH Guidelines, and were approved by the Ethics Committee of the University of Oslo and the Norwegian animal welfare committee (FOTS ID 20208). The majority of the experiments were performed on adult male Wistar rats (250-350 g) purchased from Janvier Labs (Le Genest-Saint-Isle, France). Rats were group housed at 22{degree sign}C on a 12 h:12 h light-dark cycle, with free access to food and water. Cardiomyocytes isolated from transgenic RyR2-S2814D and RyR2-S2814A mice were provided by the laboratory of Xander Wehren (Baylor College of Medicine, Texas, United States) where experiments were performed in accordance with the Guide for the Care and Use of Laboratory Animals (National Academies Press, 2011) and approved by the Baylor College of Medicine Institutional Animal Care and Use Committee. A total of 64 rats and 6 mice were used in this study.

Copyright

© 2022, Shen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,501
    views
  • 382
    downloads
  • 18
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xin Shen
  2. Jonas van den Brink
  3. Anna Bergan-Dahl
  4. Terje R Kolstad
  5. Einar Sjaastad Norden
  6. Yufeng Hou
  7. Martin Laasmaa
  8. Yuriana Aguilar-Sanchez
  9. Ann Pepper Quick
  10. Emil Knut Stenersen Espe
  11. Ivar Sjaastad
  12. Xander HT Wehrens
  13. Andrew G Edwards
  14. Christian Soeller
  15. William Edward Louch
(2022)
Prolonged β-adrenergic stimulation disperses ryanodine receptor clusters in cardiomyocytes
eLife 11:e77725.
https://doi.org/10.7554/eLife.77725

Share this article

https://doi.org/10.7554/eLife.77725

Further reading

    1. Cell Biology
    2. Developmental Biology
    Sarah Y Coomson, Salil A Lachke
    Insight

    A study in mice reveals key interactions between proteins involved in fibroblast growth factor signaling and how they contribute to distinct stages of eye lens development.

    1. Cell Biology
    2. Evolutionary Biology
    Paul Richard J Yulo, Nicolas Desprat ... Heather L Hendrickson
    Research Article

    Maintenance of rod-shape in bacterial cells depends on the actin-like protein MreB. Deletion of mreB from Pseudomonas fluorescens SBW25 results in viable spherical cells of variable volume and reduced fitness. Using a combination of time-resolved microscopy and biochemical assay of peptidoglycan synthesis, we show that reduced fitness is a consequence of perturbed cell size homeostasis that arises primarily from differential growth of daughter cells. A 1000-generation selection experiment resulted in rapid restoration of fitness with derived cells retaining spherical shape. Mutations in the peptidoglycan synthesis protein Pbp1A were identified as the main route for evolutionary rescue with genetic reconstructions demonstrating causality. Compensatory pbp1A mutations that targeted transpeptidase activity enhanced homogeneity of cell wall synthesis on lateral surfaces and restored cell size homeostasis. Mechanistic explanations require enhanced understanding of why deletion of mreB causes heterogeneity in cell wall synthesis. We conclude by presenting two testable hypotheses, one of which posits that heterogeneity stems from non-functional cell wall synthesis machinery, while the second posits that the machinery is functional, albeit stalled. Overall, our data provide support for the second hypothesis and draw attention to the importance of balance between transpeptidase and glycosyltransferase functions of peptidoglycan building enzymes for cell shape determination.