Cross-modality synthesis of EM time series and live fluorescence imaging
Abstract
Analyses across imaging modalities allow the integration of complementary spatiotemporal information about brain development, structure and function. However, systematic atlasing across modalities is limited by challenges to effective image alignment. We combine highly spatially resolved electron microscopy (EM) and highly temporally resolved time-lapse fluorescence microscopy (FM) to examine the emergence of a complex nervous system in C. elegans embryogenesis. We generate an EM time series at four classic developmental stages and create a landmark-based co-optimization algorithm for cross-modality image alignment, which handles developmental heterochrony among datasets to achieve accurate single-cell level alignment. Synthesis based on the EM series and time-lapse FM series carrying different cell-specific markers reveals critical dynamic behaviors across scales of identifiable individual cells in the emergence of the primary neuropil, the nerve ring, as well as a major sensory organ, the amphid. Our study paves the way for systematic cross-modality data synthesis in C. elegans and demonstrates a powerful approach that may be applied broadly.
Data availability
EM data has been made available on WebKnossos, and source code made available on Github. Links are provided in MS and on project website.
Article and author information
Author details
Funding
National Institutes of Health (R01GM097576)
- Zhirong Bao
National Institutes of Health (R24OD016474)
- Zhirong Bao
National Institutes of Health (P30CA008748)
- Zhirong Bao
Chan Zuckerberg Initiative (2019-198110 (5022))
- Anthony Santella
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2022, Santella et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,008
- views
-
- 203
- downloads
-
- 4
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Developmental Biology
Proteins that allow water to move in and out of cells help shape the development of new blood vessels.
-
- Developmental Biology
- Neuroscience
The ligand Netrin mediates axon guidance through a combination of haptotaxis over short distances and chemotaxis over longer distances.