Cross-modality synthesis of EM time series and live fluorescence imaging

  1. Anthony Santella
  2. Irina Kolotuev  Is a corresponding author
  3. Caroline Kizilyaprak
  4. Zhirong Bao  Is a corresponding author
  1. Memorial Sloan Kettering Cancer Center, United States
  2. University of Lausanne, Switzerland

Abstract

Analyses across imaging modalities allow the integration of complementary spatiotemporal information about brain development, structure and function. However, systematic atlasing across modalities is limited by challenges to effective image alignment. We combine highly spatially resolved electron microscopy (EM) and highly temporally resolved time-lapse fluorescence microscopy (FM) to examine the emergence of a complex nervous system in C. elegans embryogenesis. We generate an EM time series at four classic developmental stages and create a landmark-based co-optimization algorithm for cross-modality image alignment, which handles developmental heterochrony among datasets to achieve accurate single-cell level alignment. Synthesis based on the EM series and time-lapse FM series carrying different cell-specific markers reveals critical dynamic behaviors across scales of identifiable individual cells in the emergence of the primary neuropil, the nerve ring, as well as a major sensory organ, the amphid. Our study paves the way for systematic cross-modality data synthesis in C. elegans and demonstrates a powerful approach that may be applied broadly.

Data availability

EM data has been made available on WebKnossos, and source code made available on Github. Links are provided in MS and on project website.

The following data sets were generated

Article and author information

Author details

  1. Anthony Santella

    Molecular Cytology Core, Memorial Sloan Kettering Cancer Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Irina Kolotuev

    Electron Microscopy Facility, University of Lausanne, Lausanne, Switzerland
    For correspondence
    irina.kolotueva@unil.ch
    Competing interests
    The authors declare that no competing interests exist.
  3. Caroline Kizilyaprak

    Electron Microscopy Facility, University of Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  4. Zhirong Bao

    Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States
    For correspondence
    baoz@mskcc.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2201-2745

Funding

National Institutes of Health (R01GM097576)

  • Zhirong Bao

National Institutes of Health (R24OD016474)

  • Zhirong Bao

National Institutes of Health (P30CA008748)

  • Zhirong Bao

Chan Zuckerberg Initiative (2019-198110 (5022))

  • Anthony Santella

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Oliver Hobert, Columbia University, Howard Hughes Medical Institute, United States

Version history

  1. Preprint posted: February 13, 2022 (view preprint)
  2. Received: February 15, 2022
  3. Accepted: June 5, 2022
  4. Accepted Manuscript published: June 6, 2022 (version 1)
  5. Version of Record published: June 21, 2022 (version 2)

Copyright

© 2022, Santella et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 874
    Page views
  • 191
    Downloads
  • 2
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Anthony Santella
  2. Irina Kolotuev
  3. Caroline Kizilyaprak
  4. Zhirong Bao
(2022)
Cross-modality synthesis of EM time series and live fluorescence imaging
eLife 11:e77918.
https://doi.org/10.7554/eLife.77918

Share this article

https://doi.org/10.7554/eLife.77918

Further reading

    1. Developmental Biology
    2. Neuroscience
    Tariq Zaman, Daniel Vogt ... Michael R Williams
    Research Article

    The cell-type-specific expression of ligand/receptor and cell-adhesion molecules is a fundamental mechanism through which neurons regulate connectivity. Here, we determine a functional relevance of the long-established mutually exclusive expression of the receptor tyrosine kinase Kit and the trans-membrane protein Kit Ligand by discrete populations of neurons in the mammalian brain. Kit is enriched in molecular layer interneurons (MLIs) of the cerebellar cortex (i.e., stellate and basket cells), while cerebellar Kit Ligand is selectively expressed by a target of their inhibition, Purkinje cells (PCs). By in vivo genetic manipulation spanning embryonic development through adulthood, we demonstrate that PC Kit Ligand and MLI Kit are required for, and capable of driving changes in, the inhibition of PCs. Collectively, these works in mice demonstrate that the Kit Ligand/Kit receptor dyad sustains mammalian central synapse function and suggest a rationale for the affiliation of Kit mutation with neurodevelopmental disorders.

    1. Developmental Biology
    2. Neuroscience
    Smrithi Prem, Bharati Dev ... Emanuel DiCicco-Bloom
    Research Article

    Autism spectrum disorder (ASD) is defined by common behavioral characteristics, raising the possibility of shared pathogenic mechanisms. Yet, vast clinical and etiological heterogeneity suggests personalized phenotypes. Surprisingly, our iPSC studies find that six individuals from two distinct ASD-subtypes, idiopathic and 16p11.2 deletion, have common reductions in neural precursor cell (NPC) neurite outgrowth and migration even though whole genome sequencing demonstrates no genetic overlap between the datasets. To identify signaling differences that may contribute to these developmental defects, an unbiased phospho-(p)-proteome screen was performed. Surprisingly despite the genetic heterogeneity, hundreds of shared p-peptides were identified between autism subtypes including the mTOR pathway. mTOR signaling alterations were confirmed in all NPCs across both ASD-subtypes, and mTOR modulation rescued ASD phenotypes and reproduced autism NPC associated phenotypes in control NPCs. Thus, our studies demonstrate that genetically distinct ASD subtypes have common defects in neurite outgrowth and migration which are driven by the shared pathogenic mechanism of mTOR signaling dysregulation.