Cross-modality synthesis of EM time series and live fluorescence imaging

  1. Anthony Santella
  2. Irina Kolotuev  Is a corresponding author
  3. Caroline Kizilyaprak
  4. Zhirong Bao  Is a corresponding author
  1. Memorial Sloan Kettering Cancer Center, United States
  2. University of Lausanne, Switzerland

Abstract

Analyses across imaging modalities allow the integration of complementary spatiotemporal information about brain development, structure and function. However, systematic atlasing across modalities is limited by challenges to effective image alignment. We combine highly spatially resolved electron microscopy (EM) and highly temporally resolved time-lapse fluorescence microscopy (FM) to examine the emergence of a complex nervous system in C. elegans embryogenesis. We generate an EM time series at four classic developmental stages and create a landmark-based co-optimization algorithm for cross-modality image alignment, which handles developmental heterochrony among datasets to achieve accurate single-cell level alignment. Synthesis based on the EM series and time-lapse FM series carrying different cell-specific markers reveals critical dynamic behaviors across scales of identifiable individual cells in the emergence of the primary neuropil, the nerve ring, as well as a major sensory organ, the amphid. Our study paves the way for systematic cross-modality data synthesis in C. elegans and demonstrates a powerful approach that may be applied broadly.

Data availability

EM data has been made available on WebKnossos, and source code made available on Github. Links are provided in MS and on project website.

The following data sets were generated

Article and author information

Author details

  1. Anthony Santella

    Molecular Cytology Core, Memorial Sloan Kettering Cancer Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Irina Kolotuev

    Electron Microscopy Facility, University of Lausanne, Lausanne, Switzerland
    For correspondence
    irina.kolotueva@unil.ch
    Competing interests
    The authors declare that no competing interests exist.
  3. Caroline Kizilyaprak

    Electron Microscopy Facility, University of Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  4. Zhirong Bao

    Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States
    For correspondence
    baoz@mskcc.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2201-2745

Funding

National Institutes of Health (R01GM097576)

  • Zhirong Bao

National Institutes of Health (R24OD016474)

  • Zhirong Bao

National Institutes of Health (P30CA008748)

  • Zhirong Bao

Chan Zuckerberg Initiative (2019-198110 (5022))

  • Anthony Santella

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Santella et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,008
    views
  • 203
    downloads
  • 4
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Anthony Santella
  2. Irina Kolotuev
  3. Caroline Kizilyaprak
  4. Zhirong Bao
(2022)
Cross-modality synthesis of EM time series and live fluorescence imaging
eLife 11:e77918.
https://doi.org/10.7554/eLife.77918

Share this article

https://doi.org/10.7554/eLife.77918

Further reading

    1. Developmental Biology
    Yufei Wu, Sean X Sun
    Insight

    Proteins that allow water to move in and out of cells help shape the development of new blood vessels.

    1. Developmental Biology
    2. Neuroscience
    Maria I Lazaro-Pena, Carlos A Diaz-Balzac
    Insight

    The ligand Netrin mediates axon guidance through a combination of haptotaxis over short distances and chemotaxis over longer distances.