Phosphoregulation of DSB-1 mediates control of meiotic double-strand break activity

  1. Heyun Guo
  2. Ericca L Stamper
  3. Aya Sato-Carlton
  4. Masa A Shimazoe
  5. Xuan Li
  6. Liangyu Zhang
  7. Lewis Stevens
  8. KC Jacky Tam
  9. Abby F Dernburg
  10. Peter M Carlton  Is a corresponding author
  1. Graduate School of Biostudies, Kyoto University, Yoshidakonoe, Sakyo, Japan
  2. Department of Molecular and Cell Biology, University of California, United States
  3. Howard Hughes Medical Institute, United States
  4. California Institute for Quantitative Biosciences, United States
  5. Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, United States
  6. Department of Science, Kyoto University, Japan
  7. Institute of Evolutionary Biology, Ashworth Laboratories, School of Biological Sciences, University of Edinburgh, United Kingdom
  8. Radiation Biology Center, Kyoto University, Japan
  9. Institute for Integrated Cell‐Material Sciences (iCeMS), Kyoto University, Japan
6 figures, 2 tables and 3 additional files

Figures

Figure 1 with 2 supplements
DSB-1 is phosphoregulated in a PPH-4.1PP4- and ATL-1ATR -dependent manner and ATL-1ATR kinase antagonizes PPH-4.1PP4 phosphatase.

(A) Left: Western blot of GFP-fused DSB-1 probed with α-GFP. GFP-DSB-1 detected in extracts from wild-type and gfp-dsb-1 worms (24 hr post-L4 stage) with either control RNAi or pph-4.1 RNAi …

Figure 1—figure supplement 1
Validation of effectiveness of pph-4 RNAi and western blots of DSB-1.

(A) Images of DAPI-stained diakinesis nuclei of control (N2) or gfp-dsb-1 treated with pph-4 RNAi. The control nuclei contained six bivalents while the majority of nuclei contained univalents in gfp-…

Figure 1—figure supplement 2
Double-strand break (DSB) formation in atl-1 and atm-1 mutants.

(A) Maximum-intensity projection of an entire gonad arm from an atl-1(tm853) mutant. Top left panel shows DAPI staining in magenta and RAD-51 staining in green. Bottom left panel shows RAD-51 foci …

Figure 2 with 2 supplements
The dsb-1(5A) mutation rescues double-strand break (DSB) defect and viability loss of pph-4.1 mutants.

(A) A schematic diagram of the DSB-1 protein sequence. Green regions indicate intrinsically disordered regions from the D2P2 database (Oates et al., 2013). Five serines which were mutated into …

Figure 2—source data 1

RAD-51 foci numbers graphed in Figure 2C.

Related to Figure 2C.

https://cdn.elifesciences.org/articles/77956/elife-77956-fig2-data1-v2.xlsx
Figure 2—source data 2

Brood size and number of viable progeny in the genotypes indicated in Figure 2D.

Related to Figure 2D.

https://cdn.elifesciences.org/articles/77956/elife-77956-fig2-data2-v2.xlsx
Figure 2—figure supplement 1
Sequence alignment of DSB-1 orthologs.

Multiple sequence alignment (MSA) of DSB-1 orthologs in 11 Caenorhabditis. [ST]Q sites are depicted in magenta. FXXP sites are boxed in red. The region of all proteins scored as intrinsically …

Figure 2—figure supplement 2
Double-strand break (DSB) formation in dsb-2 non-phosphorylatable mutant.

(A) A maximum-intensity projection of an entire gonad from wild type with the DAPI staining on the top and RAD-51 staining at the bottom in grayscale. Scale bar, 50 μm. Boxed inset on the right …

Figure 3 with 1 supplement
Chiasma formation and homologous pairing defects are partially rescued by the dsb-1(5A) allele in pph-4.1 mutants.

(A) FISH images show paired 5S rDNA sites in wild type, dsb-1(5A) and pph-4.1(tm1598); dsb-1(5A) worms (arrows indicate paired foci), and unpaired sites in pph-4.1(tm1598) mutants (arrowheads …

Figure 3—source data 1

Number of paired and unpaired nuclei in the genotypes indicated in Figure 3B.

Related to Figure 3B.

https://cdn.elifesciences.org/articles/77956/elife-77956-fig3-data1-v2.xlsx
Figure 3—source data 2

Number of nuclei with indicated DAPI body numbers of each genotype in Figure 3C.

Related to Figure 3C.

https://cdn.elifesciences.org/articles/77956/elife-77956-fig3-data2-v2.xlsx
Figure 3—source data 3

Number of nuclei with indicated DAPI body numbers of each genotype in Figure 3D.

Related to Figure 3D.

https://cdn.elifesciences.org/articles/77956/elife-77956-fig3-data3-v2.xlsx
Figure 3—figure supplement 1
Synapsis in pph-4.1; dsb-1(5A) and pph-4.1; atl-1/nT1 mutants.

Immunofluorescence images of wild-type, pph-4.1 (tm1598), dsb-1(5A), pph-4.1(tm1598); dsb-1(5A), atl-1/nT1 and pph-4.1(tm1598); atl-1/nT1 mutants. Left panel shows the maximum-intensity projection …

The dsb-1(5A) mutation rescues double-strand break (DSB) and crossover formation in dsb-2 mutants.

(A) Immunofluorescence images of RAD-51 foci in mid-pachytene nuclei of the indicated genotypes. Scale bar, 5 μm. (B) Quantification of RAD-51 foci in the gonads of the genotypes indicated in (A). …

Figure 4—source data 1

RAD-51 foci numbers graphed in Figure 4B.

Related to Figure 4B.

https://cdn.elifesciences.org/articles/77956/elife-77956-fig4-data1-v2.xlsx
Figure 4—source data 2

Number of nuclei with indicated DAPI body numbers of each genotype in Figure 4C.

Related to Figure 4C.

https://cdn.elifesciences.org/articles/77956/elife-77956-fig4-data2-v2.xlsx
Figure 5 with 2 supplements
Alanine substitution of serine 186 in DSB-1 suffices to rescue the dsb-2 mutation.

(A) Diagram depicting a series of dsb-1 phospho mutants: dsb-1(1A) is dsb-1(S186A); dsb-1(2A) is dsb-1(S137A; S143A); dsb-1(3A) is dsb-1(S137A; S143A; S186A) and dsb-1(5A) is dsb-1(S137A; S143A; …

Figure 5—source data 1

Number of daily laid viable progeny of the indicated genotypes in Figure 5B.

Related to Figure 5B.

https://cdn.elifesciences.org/articles/77956/elife-77956-fig5-data1-v2.xlsx
Figure 5—source data 2

Intensity of phos-GFP-DSB-1 and non-phos-GFP band in Figure 5C.

Related to Figure 5C.

https://cdn.elifesciences.org/articles/77956/elife-77956-fig5-data2-v2.xlsx
Figure 5—source data 3

Western blotting raw images in Figure 5C.

Related to Figure 5C.

https://cdn.elifesciences.org/articles/77956/elife-77956-fig5-data3-v2.zip
Figure 5—figure supplement 1
Double-strand break (DSB) formation in a series of dsb-1 non-phosphorylatable mutants.

Quantification of RAD-51 foci in the gonads of the indicated genotypes (data of wild type and dsb-1(5A) were duplicated from Figure 4B). Data are presented as mean ± SEM, three gonads were scored …

Figure 5—figure supplement 2
Double-strand break (DSB) formation and synapsis in pph-4.1; dsb-1(1A) and dsb-2; dsb-1(1A) mutants.

(A) Immunofluorescence images of wild type, dsb-1(1A), dsb-2(me96), dsb-2(me96); dsb-1(1A), pph-4.1(tm1598), and pph-4.1(tm1598); dsb-1(1A) mutants. Maximum-intensity projections of nuclei at …

Figure 6 with 1 supplement
Structural prediction of double-strand break (DSB) factors and their interaction.

(A) A representative structure of the DSB-1, DSB-2, and DSB-3 heterotrimer predicted by the AlphaFold structure prediction pipeline (Jumper et al., 2021; Mirdita et al., 2021) is shown at top. Green …

Figure 6—source data 1

AlphaFold prediction files and settings (ZIP).

Related to Figure 6A.

https://cdn.elifesciences.org/articles/77956/elife-77956-fig6-data1-v2.zip
Figure 6—figure supplement 1
Phylogenetic prediction of double-strand break (DSB) factors.

Maximum likelihood gene tree of DSB-1/2 homologs in the genus Caenorhabditis.

Tables

Table 1
Embryonic viability, male progeny percentage indicating the rate of X chromosome nondisjunction, and total number of scored embryos is shown for hermaphrodite self-progeny of the indicated genotypes (Table 1—source data 1).
GenotypeEmbryonic viability (%)Male percentage (%)Total # eggs scored
WT99.280.041990
gfp-dsb-199.100.192578
dsb-1(1A)98.470.153427
dsb-1(2A)98.250.001347
dsb-1(3A)99.290.192056
dsb-1(5A)99.220.002546
pph-4.1(tm1598)2.0045.601424
dsb-2(me96)39.5513.853413
dsb-2(me96); dsb-1(1A)93.961.403370
dsb-2(me96); dsb-1(2A)83.123.312413
dsb-2(me96); dsb-1(3A)97.560.642395
dsb-2(me96); dsb-1(5A)98.640.041596
pph-4.1(tm1598); dsb-1(1A)7.3932.21496
pph-4.1(tm1598); dsb-1(5A)40.897.891273
Table 1—source data 1

Brood size and number of viable progeny of the genotypes indicated in Table 1.

Related to Table 1.

https://cdn.elifesciences.org/articles/77956/elife-77956-table1-data1-v2.xlsx
Key resources table
Reagent type (species) or resourceDesignationSource or referenceIdentifiersAdditional information
Gene (Caenorhabditis elegans)dsb-1WormBase/Stamper et al., 2013
PMID:23990794
WormBase ID:WBGene00008580
Gene (Caenorhabditis elegans)pph-4.1WormBase/Sato-Carlton et al., 2014
PMID:25340746
WormBase ID:WBGene00004085
Gene (Caenorhabditis elegans)atl-1WormBaseWormBase ID:WBGene00000226
Gene (Caenorhabditis elegans)atm-1WormBaseWormBase ID:WBGene00000227
Gene (Caenorhabditis elegans)dsb-2WormBase/Rosu et al., 2013
PMID:23950729
WormBase ID:WBGene00194892
Strain, strain background (Escherichia coli)pph-4.1 RNAi-L4440 in HT115Sato-Carlton et al., 2014
PMID:25340746
Strain, strain background (Escherichia coli)L4440 in HT115Ahringer Lab RNAi library (Source Biosciences)
Strain, strain background (Caenorhabditis elegans)For C. elegans allele and strain information,
see Supplementary file 1
This paperN/ASee Supplementary file 1
Genetic reagent (Caenorhabditis elegans)For CRISPR/Cas9 reagents, see
sequence-based reagent and peptide, recombinant protein.
This paperN/APurchased from IDT
AntibodyAnti-GFP (mouse monoclonal)Santa CruzCat#sc-9996WB (1:1000)
AntibodyAnti-Actin (rabbit polyclonal)Santa CruzCat#sc-1615WB (1:3000)
AntibodyAnti-RAD-51(rabbit polyclonal)SDIX/Novus BiologicalsCat#29480002 lot#G3048-009A02IF (1:10,000)
AntibodyAnti-DSB-1 (guinea pig polyclonal)Stamper et al., 2013
PMID:23990794
N/AWB (1:75)
AntibodyAnti-ZIM-3 (rabbit polyclonal)Phillips and Dernburg, 2006 PMID:17141157N/AIF (1:2000)
AntibodyAnti-SYP-1 (guinea pig polyclonal)Sato-Carlton et al., 2020
PMID:33175901
N/AIF (1:100)
AntibodyAnti-SYP-2 (rat polyclonal)Sato-Carlton et al., 2020 PMID:33175901N/AIF (1:200)
AntibodyAnti-HTP-3 (guinea pig polyclonal)MacQueen et al., 2005
PMID:16360034
N/AIF (1:500)
AntibodyAlexa488-anti-rabbit (donkey polyclonal)Jackson ImmunoResearchCat#711-545-152, lot#109880IF (1:500)
AntibodyDyLight649-anti-guinea pig (donkey polyclonal)Jackson ImmunoResearchCat#706-495-148, lot#95544IF (1:500)
AntibodyDyLight594-anti-guinea pig (donkey polyclonal)Jackson ImmunoResearchCat#706-515-148, lot#94259IF (1:500)
AntibodyDyLight649-anti-rat (donkey polyclonal)Jackson ImmunoResearchCat#712-495-153, lot#94218IF (1:500)
AntibodyHRP-conjugated anti-mouse (sheep polyclonal)GE Healthcare BioSciencesCat#NIF825WB (1:10,000)
AntibodyHRP-conjugated anti-rabbit (goat polyclonal)AbcamCat#ab97051WB (1:10,000)
AntibodyHRP-conjugated anti-guinea pig (goat polyclonal)Beckman CoulterCat#732868WB (1:10,000)
Sequence-based reagentFISH probe to the right arm of Chromosome V (5S rDNA)Dernburg et al., 1998
PMID:9708740
 N/A
Sequence-based reagentAlt-R CRISPR-Cas9 tracrRNAIDTCat# 1072532
Sequence-based reagentdpy-10 crRNA: 5’-GCTACCATAGGCACCACGAG-3’https://www.ncbi.nlm.nih.gov/pubmed/25161212N/A
Sequence-based reagentdpy-10(cn64) homology template for CRISPR
5'-cacttgaacttcaatacggcaagatgagaatgactggaaaccgta
ccgcATgCggtgcctatggtagcggagcttcacatggcttcagaccaacagcct-3’
https://www.ncbi.nlm.nih.gov/pubmed/25161212N/A
Sequence-based reagentFor crRNAs, repair templates and genotyping primers, see Supplementary file 2This paperN/APurchased from IDT
Peptide, recombinant proteinRecombinant Cas9 proteinUC Berkeley QB3 Macrolabhttps://macrolab.qb3.berkeley.edu/cas9-nls-purified-protein/
Commercial assay or kitPierce BCA Protein Assay KitThermoFisher Scientific Cat#23227
Chemical compound, drugDAPI (4',6-Diamidino-2-phenylindole dihydrochloride)Nacalai IncCat#11034–56
Chemical compound, drugNuclease-free Duplex BufferIDTCat#11-01-03-01
Chemical compound, drugGFP-Trap magnetic beadsChromoTekCat#gtma-20
Chemical compound, drugLambda Protein PhosphataseBioLabsCat#P0753S
Chemical compound, drugChemilumi-one superNacalai IncCat#02230–30
Chemical compound, drugChemilumi-one ultraNacalai IncCat#11644–24
Chemical compound, drugskim milkNacalai IncCat#31149–75
Chemical compound, drugSuperSep (TM) Ace, 5%–12%, 13wellWakoCat#199–15191
Chemical compound, drugNuPAGE 4% to 12%, Bis-Tris, 1.0 mm, Mini Protein Gel, 12-wellInvitrogenCat#NP0322BOX
Software, algorithmsoftWoRx suiteApplied Precision/GE HealthcareN/A
Software, algorithmOMEROBurel et al., 2015
PMID:26223880
https://www.openmicroscopy.org/omero/
Software, algorithmPriismChen et al., 1996
PMID:8742723
https://msg.ucsf.edu
Software, algorithmPrism6GraphPadhttps://www.graphpad.dom/scientific-software/prism
Software, algorithmMafft v7.487Katoh and Standley, 2013
PMID:23329690
https://mafft.cbrc.jp/alignment/software/
Software, algorithmFijiSchindelin et al., 2012
PMID:22743772
https://fiji.sc
Software, algorithmAGAT v0.4.0Dainat et al., 2020
doi:10.5281/ZENODO.3552717
https://github.com/NBISweden/AGAT
Software, algorithmOrthoFinder v2.5.4Emms and Kelly, 2019, Emms, 2022 PMID:31727128https://github.com/davidemms/OrthoFinder
Software, algorithmFSA v1.15.9Bradley et al., 2009
PMID:19478997
http://fsa.sourceforge.net/
Software, algorithmIQ-TREE v2.2.0-betaNguyen et al., 2015
PMID:25371430
http://www.iqtree.org/
Software, algorithmETE3 Python moduleHuerta-Cepas et al., 2016
PMID:26921390
http://etetoolkit.org/

Additional files

Supplementary file 1

Table listing strains used in this study.

https://cdn.elifesciences.org/articles/77956/elife-77956-supp1-v2.docx
Supplementary file 2

Table listing crRNAs, repair templates, and genotyping primers for transgenes generated in this study.

https://cdn.elifesciences.org/articles/77956/elife-77956-supp2-v2.docx
Transparent reporting form
https://cdn.elifesciences.org/articles/77956/elife-77956-transrepform1-v2.docx

Download links