Phosphoregulation of DSB-1 mediates control of meiotic double-strand break activity

  1. Heyun Guo
  2. Ericca L Stamper
  3. Aya Sato-Carlton
  4. Masa A Shimazoe
  5. Xuan Li
  6. Liangyu Zhang
  7. Lewis Stevens
  8. KC Jacky Tam
  9. Abby F Dernburg
  10. Peter M Carlton  Is a corresponding author
  1. Kyoto University, Japan
  2. University of California, Berkeley, United States
  3. University of Edinburgh, United Kingdom

Abstract

In the first meiotic cell division, proper segregation of chromosomes in most organisms depends on chiasmata, exchanges of continuity between homologous chromosomes that originate from the repair of programmed double-strand breaks (DSBs) catalyzed by the Spo11 endonuclease. Since DSBs can lead to irreparable damage in germ cells, while chromosomes lacking DSBs also lack chiasmata, the number of DSBs must be carefully regulated to be neither too high nor too low. Here, we show that in Caenorhabditis elegans, meiotic DSB levels are controlled by the phosphoregulation of DSB-1, a homolog of the yeast Spo11 cofactor Rec114, by the opposing activities of PP4PPH-4.1 phosphatase and ATRATL-1 kinase. Increased DSB-1 phosphorylation in pph-4.1 mutants correlates with reduction in DSB formation, while prevention of DSB-1 phosphorylation drastically increases the number of meiotic DSBs both in pph-4.1 mutants as well as in the wild type background. C. elegans and its close relatives also possess a diverged paralog of DSB-1, called DSB-2, and loss of dsb-2 is known to reduce DSB formation in oocytes with increasing age. We show that the proportion of the phosphorylated, and thus inactivated, form of DSB-1 increases with age and upon loss of DSB-2, while non-phosphorylatable DSB-1 rescues the age-dependent decrease in DSBs in dsb-2 mutants. These results suggest that DSB-2 evolved in part to compensate for the inactivation of DSB-1 through phosphorylation, to maintain levels of DSBs in older animals. Our work shows that PP4PPH-4.1, ATRATL-1, and DSB-2 act in concert with DSB-1 to promote optimal DSB levels throughout the reproductive lifespan.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files; numerical Source Data files have been provided for all plots and graphs

Article and author information

Author details

  1. Heyun Guo

    Graduate School of Biostudies, Kyoto University, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  2. Ericca L Stamper

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Aya Sato-Carlton

    Graduate School of Biostudies, Kyoto University, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  4. Masa A Shimazoe

    Graduate School of Biostudies, Kyoto University, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2018-0497
  5. Xuan Li

    Graduate School of Biostudies, Kyoto University, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  6. Liangyu Zhang

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2701-0773
  7. Lewis Stevens

    Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6075-8273
  8. KC Jacky Tam

    Graduate School of Biostudies, Kyoto University, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  9. Abby F Dernburg

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8037-1079
  10. Peter M Carlton

    Graduate School of Biostudies, Kyoto University, Kyoto, Japan
    For correspondence
    carlton.petermark.3v@kyoto-u.ac.jp
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5320-6024

Funding

Japan Society for the Promotion of Science (5H04328)

  • Peter M Carlton

Japan Society for the Promotion of Science (17K15064)

  • Aya Sato-Carlton

Howard Hughes Medical Institute

  • Abby F Dernburg

Naito Foundation

  • Aya Sato-Carlton

Ministry of Education, Culture, Sports, Science and Technology

  • Heyun Guo

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Federico Pelisch, University of Dundee, United Kingdom

Version history

  1. Preprint posted: February 17, 2022 (view preprint)
  2. Received: February 17, 2022
  3. Accepted: June 23, 2022
  4. Accepted Manuscript published: June 27, 2022 (version 1)
  5. Version of Record published: July 13, 2022 (version 2)

Copyright

© 2022, Guo et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,267
    views
  • 315
    downloads
  • 15
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Heyun Guo
  2. Ericca L Stamper
  3. Aya Sato-Carlton
  4. Masa A Shimazoe
  5. Xuan Li
  6. Liangyu Zhang
  7. Lewis Stevens
  8. KC Jacky Tam
  9. Abby F Dernburg
  10. Peter M Carlton
(2022)
Phosphoregulation of DSB-1 mediates control of meiotic double-strand break activity
eLife 11:e77956.
https://doi.org/10.7554/eLife.77956

Share this article

https://doi.org/10.7554/eLife.77956

Further reading

    1. Cell Biology
    Ang Li, Jianxun Yi ... Jingsong Zhou
    Research Article

    Amyotrophic lateral sclerosis (ALS) is a fatal neuromuscular disorder characterized by progressive weakness of almost all skeletal muscles, whereas extraocular muscles (EOMs) are comparatively spared. While hindlimb and diaphragm muscles of end-stage SOD1G93A (G93A) mice (a familial ALS mouse model) exhibit severe denervation and depletion of Pax7+satellite cells (SCs), we found that the pool of SCs and the integrity of neuromuscular junctions (NMJs) are maintained in EOMs. In cell sorting profiles, SCs derived from hindlimb and diaphragm muscles of G93A mice exhibit denervation-related activation, whereas SCs from EOMs of G93A mice display spontaneous (non-denervation-related) activation, similar to SCs from wild-type mice. Specifically, cultured EOM SCs contain more abundant transcripts of axon guidance molecules, including Cxcl12, along with more sustainable renewability than the diaphragm and hindlimb counterparts under differentiation pressure. In neuromuscular co-culture assays, AAV-delivery of Cxcl12 to G93A-hindlimb SC-derived myotubes enhances motor neuron axon extension and innervation, recapitulating the innervation capacity of EOM SC-derived myotubes. G93A mice fed with sodium butyrate (NaBu) supplementation exhibited less NMJ loss in hindlimb and diaphragm muscles. Additionally, SCs derived from G93A hindlimb and diaphragm muscles displayed elevated expression of Cxcl12 and improved renewability following NaBu treatment in vitro. Thus, the NaBu-induced transcriptomic changes resembling the patterns of EOM SCs may contribute to the beneficial effects observed in G93A mice. More broadly, the distinct transcriptomic profile of EOM SCs may offer novel therapeutic targets to slow progressive neuromuscular functional decay in ALS and provide possible ‘response biomarkers’ in pre-clinical and clinical studies.

    1. Cell Biology
    Simona Bolamperti, Hiroaki Saito ... Hanna Taipaleenmäki
    Research Article

    Osteoblast adherence to bone surfaces is important for remodeling bone tissue. This study demonstrates that deficiency of TG-interacting factor 1 (Tgif1) in osteoblasts results in altered cell morphology, reduced adherence to collagen type I-coated surfaces, and impaired migration capacity. Tgif1 is essential for osteoblasts to adapt a regular cell morphology and to efficiently adhere and migrate on collagen type I-rich matrices in vitro. Furthermore, Tgif1 acts as a transcriptional repressor of p21-activated kinase 3 (Pak3), an important regulator of focal adhesion formation and osteoblast spreading. Absence of Tgif1 leads to increased Pak3 expression, which impairs osteoblast spreading. Additionally, Tgif1 is implicated in osteoblast recruitment and activation of bone surfaces in the context of bone regeneration and in response to parathyroid hormone 1–34 (PTH 1–34) treatment in vivo in mice. These findings provide important novel insights in the regulation of the cytoskeletal architecture of osteoblasts.