Phosphoregulation of DSB-1 mediates control of meiotic double-strand break activity

  1. Heyun Guo
  2. Ericca L Stamper
  3. Aya Sato-Carlton
  4. Masa A Shimazoe
  5. Xuan Li
  6. Liangyu Zhang
  7. Lewis Stevens
  8. KC Jacky Tam
  9. Abby F Dernburg
  10. Peter M Carlton  Is a corresponding author
  1. Kyoto University, Japan
  2. University of California, Berkeley, United States
  3. University of Edinburgh, United Kingdom

Abstract

In the first meiotic cell division, proper segregation of chromosomes in most organisms depends on chiasmata, exchanges of continuity between homologous chromosomes that originate from the repair of programmed double-strand breaks (DSBs) catalyzed by the Spo11 endonuclease. Since DSBs can lead to irreparable damage in germ cells, while chromosomes lacking DSBs also lack chiasmata, the number of DSBs must be carefully regulated to be neither too high nor too low. Here, we show that in Caenorhabditis elegans, meiotic DSB levels are controlled by the phosphoregulation of DSB-1, a homolog of the yeast Spo11 cofactor Rec114, by the opposing activities of PP4PPH-4.1 phosphatase and ATRATL-1 kinase. Increased DSB-1 phosphorylation in pph-4.1 mutants correlates with reduction in DSB formation, while prevention of DSB-1 phosphorylation drastically increases the number of meiotic DSBs both in pph-4.1 mutants as well as in the wild type background. C. elegans and its close relatives also possess a diverged paralog of DSB-1, called DSB-2, and loss of dsb-2 is known to reduce DSB formation in oocytes with increasing age. We show that the proportion of the phosphorylated, and thus inactivated, form of DSB-1 increases with age and upon loss of DSB-2, while non-phosphorylatable DSB-1 rescues the age-dependent decrease in DSBs in dsb-2 mutants. These results suggest that DSB-2 evolved in part to compensate for the inactivation of DSB-1 through phosphorylation, to maintain levels of DSBs in older animals. Our work shows that PP4PPH-4.1, ATRATL-1, and DSB-2 act in concert with DSB-1 to promote optimal DSB levels throughout the reproductive lifespan.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files; numerical Source Data files have been provided for all plots and graphs

Article and author information

Author details

  1. Heyun Guo

    Graduate School of Biostudies, Kyoto University, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  2. Ericca L Stamper

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Aya Sato-Carlton

    Graduate School of Biostudies, Kyoto University, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  4. Masa A Shimazoe

    Graduate School of Biostudies, Kyoto University, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2018-0497
  5. Xuan Li

    Graduate School of Biostudies, Kyoto University, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  6. Liangyu Zhang

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2701-0773
  7. Lewis Stevens

    Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6075-8273
  8. KC Jacky Tam

    Graduate School of Biostudies, Kyoto University, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  9. Abby F Dernburg

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8037-1079
  10. Peter M Carlton

    Graduate School of Biostudies, Kyoto University, Kyoto, Japan
    For correspondence
    carlton.petermark.3v@kyoto-u.ac.jp
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5320-6024

Funding

Japan Society for the Promotion of Science (5H04328)

  • Peter M Carlton

Japan Society for the Promotion of Science (17K15064)

  • Aya Sato-Carlton

Howard Hughes Medical Institute

  • Abby F Dernburg

Naito Foundation

  • Aya Sato-Carlton

Ministry of Education, Culture, Sports, Science and Technology

  • Heyun Guo

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Federico Pelisch, University of Dundee, United Kingdom

Version history

  1. Preprint posted: February 17, 2022 (view preprint)
  2. Received: February 17, 2022
  3. Accepted: June 23, 2022
  4. Accepted Manuscript published: June 27, 2022 (version 1)
  5. Version of Record published: July 13, 2022 (version 2)

Copyright

© 2022, Guo et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,336
    views
  • 333
    downloads
  • 15
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Heyun Guo
  2. Ericca L Stamper
  3. Aya Sato-Carlton
  4. Masa A Shimazoe
  5. Xuan Li
  6. Liangyu Zhang
  7. Lewis Stevens
  8. KC Jacky Tam
  9. Abby F Dernburg
  10. Peter M Carlton
(2022)
Phosphoregulation of DSB-1 mediates control of meiotic double-strand break activity
eLife 11:e77956.
https://doi.org/10.7554/eLife.77956

Share this article

https://doi.org/10.7554/eLife.77956

Further reading

    1. Cell Biology
    2. Neuroscience
    Toshiharu Ichinose, Shu Kondo ... Hiromu Tanimoto
    Research Article

    Multicellular organisms are composed of specialized cell types with distinct proteomes. While recent advances in single-cell transcriptome analyses have revealed differential expression of mRNAs, cellular diversity in translational profiles remains underinvestigated. By performing RNA-seq and Ribo-seq in genetically defined cells in the Drosophila brain, we here revealed substantial post-transcriptional regulations that augment the cell-type distinctions at the level of protein expression. Specifically, we found that translational efficiency of proteins fundamental to neuronal functions, such as ion channels and neurotransmitter receptors, was maintained low in glia, leading to their preferential translation in neurons. Notably, distribution of ribosome footprints on these mRNAs exhibited a remarkable bias toward the 5′ leaders in glia. Using transgenic reporter strains, we provide evidence that the small upstream open-reading frames in the 5’ leader confer selective translational suppression in glia. Overall, these findings underscore the profound impact of translational regulation in shaping the proteomics for cell-type distinction and provide new insights into the molecular mechanisms driving cell-type diversity.

    1. Cancer Biology
    2. Cell Biology
    Camille Dantzer, Justine Vaché ... Violaine Moreau
    Research Article

    Immune checkpoint inhibitors have produced encouraging results in cancer patients. However, the majority of ß-catenin-mutated tumors have been described as lacking immune infiltrates and resistant to immunotherapy. The mechanisms by which oncogenic ß-catenin affects immune surveillance remain unclear. Herein, we highlighted the involvement of ß-catenin in the regulation of the exosomal pathway and, by extension, in immune/cancer cell communication in hepatocellular carcinoma (HCC). We showed that mutated ß-catenin represses expression of SDC4 and RAB27A, two main actors in exosome biogenesis, in both liver cancer cell lines and HCC patient samples. Using nanoparticle tracking analysis and live-cell imaging, we further demonstrated that activated ß-catenin represses exosome release. Then, we demonstrated in 3D spheroid models that activation of β-catenin promotes a decrease in immune cell infiltration through a defect in exosome secretion. Taken together, our results provide the first evidence that oncogenic ß-catenin plays a key role in exosome biogenesis. Our study gives new insight into the impact of ß-catenin mutations on tumor microenvironment remodeling, which could lead to the development of new strategies to enhance immunotherapeutic response.