Host Chitinase 3-like-1 is a universal therapeutic target for SARS-CoV-2 viral variants in COVID-19

Abstract

COVID-19 is the disease caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2; SC2) which has caused a world-wide pandemic with striking morbidity and mortality. Evaluation of SC2 strains demonstrated impressive genetic variability and many of these viral variants are now defined as variants of concern (VOC) that cause enhanced transmissibility, decreased susceptibility to antibody neutralization or therapeutics and or the ability to induce severe disease. Currently, the delta (d) and omicron (o) variants are particularly problematic based on their impressive and unprecedented transmissibility and ability to cause break through infections. The delta variant also accumulates at high concentrations in host tissues and has caused waves of lethal disease. Because studies from our laboratory have demonstrated that chitinase 3-like-1 (CHI3L1) stimulates ACE2 and Spike (S) priming proteases that mediate SC2 infection, studies were undertaken to determine if interventions that target CHI3L1 are effective inhibitors of SC2 viral variant infection. Here we demonstrate that CHI3L1 augments epithelial cell infection by pseudoviruses that express the alpha, beta, gamma, delta or omicron S proteins and that the CHI3L1 inhibitors anti-CHI3L1 and kasugamycin inhibit epithelial cell infection by these VOC pseudovirus moieties. Thus, CHI3L1 is a universal, VOC-independent therapeutic target in COVID-19.

Data availability

Figure 3-source data. Immunocytochemical evaluation of delta pseudovirus infection of Calu-3 cells (with FRG Ab Tx).Figure 6-source data. Immunocytotochemical evaluation of delta pseudovirus infection of Calu-3 cells (with Kasugamycin Tx) .Uncut original gel photos of Western blots used in Figures 4A and 4B have been provided as a supporting document.

Article and author information

Author details

  1. Suchitra Kamle

    Department of Molecular Microbiology and Immunology, Brown University, Providence, United States
    Competing interests
    No competing interests declared.
  2. Bing Ma

    Department of Molecular Microbiology and Immunology, Brown University, Providence, United States
    Competing interests
    No competing interests declared.
  3. Chang Min Lee

    Department of Molecular Microbiology and Immunology, Brown University, Providence, United States
    Competing interests
    No competing interests declared.
  4. Gail Schor

    Department of Molecular Microbiology and Immunology, Brown University, Providence, United States
    Competing interests
    No competing interests declared.
  5. Yang Zhou

    Department of Molecular Microbiology and Immunology, Brown University, Providence, United States
    Competing interests
    No competing interests declared.
  6. Chun Geun Lee

    Department of Molecular Microbiology and Immunology, Brown University, Providence, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9514-3658
  7. Jack A Elias

    Department of Molecular Microbiology and Immunology, Brown University, Providence, United States
    For correspondence
    Jack_elias@brown.edu
    Competing interests
    Jack A Elias, is a cofounder of Elkurt Pharmaceuticals and Ocean Biomedical which develop therapeutics based on the 18 glycosyl hydrolase gene family.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3124-8557

Funding

Brown University (Research Seed Grant,GR300201)

  • Chun Geun Lee

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Kamle et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 658
    views
  • 189
    downloads
  • 6
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Citations by DOI

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Suchitra Kamle
  2. Bing Ma
  3. Chang Min Lee
  4. Gail Schor
  5. Yang Zhou
  6. Chun Geun Lee
  7. Jack A Elias
(2022)
Host Chitinase 3-like-1 is a universal therapeutic target for SARS-CoV-2 viral variants in COVID-19
eLife 11:e78273.
https://doi.org/10.7554/eLife.78273

Share this article

https://doi.org/10.7554/eLife.78273