Host Chitinase 3-like-1 is a universal therapeutic target for SARS-CoV-2 viral variants in COVID-19

Abstract

COVID-19 is the disease caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2; SC2) which has caused a world-wide pandemic with striking morbidity and mortality. Evaluation of SC2 strains demonstrated impressive genetic variability and many of these viral variants are now defined as variants of concern (VOC) that cause enhanced transmissibility, decreased susceptibility to antibody neutralization or therapeutics and or the ability to induce severe disease. Currently, the delta (d) and omicron (o) variants are particularly problematic based on their impressive and unprecedented transmissibility and ability to cause break through infections. The delta variant also accumulates at high concentrations in host tissues and has caused waves of lethal disease. Because studies from our laboratory have demonstrated that chitinase 3-like-1 (CHI3L1) stimulates ACE2 and Spike (S) priming proteases that mediate SC2 infection, studies were undertaken to determine if interventions that target CHI3L1 are effective inhibitors of SC2 viral variant infection. Here we demonstrate that CHI3L1 augments epithelial cell infection by pseudoviruses that express the alpha, beta, gamma, delta or omicron S proteins and that the CHI3L1 inhibitors anti-CHI3L1 and kasugamycin inhibit epithelial cell infection by these VOC pseudovirus moieties. Thus, CHI3L1 is a universal, VOC-independent therapeutic target in COVID-19.

Data availability

Figure 3-source data. Immunocytochemical evaluation of delta pseudovirus infection of Calu-3 cells (with FRG Ab Tx).Figure 6-source data. Immunocytotochemical evaluation of delta pseudovirus infection of Calu-3 cells (with Kasugamycin Tx) .Uncut original gel photos of Western blots used in Figures 4A and 4B have been provided as a supporting document.

Article and author information

Author details

  1. Suchitra Kamle

    Department of Molecular Microbiology and Immunology, Brown University, Providence, United States
    Competing interests
    No competing interests declared.
  2. Bing Ma

    Department of Molecular Microbiology and Immunology, Brown University, Providence, United States
    Competing interests
    No competing interests declared.
  3. Chang Min Lee

    Department of Molecular Microbiology and Immunology, Brown University, Providence, United States
    Competing interests
    No competing interests declared.
  4. Gail Schor

    Department of Molecular Microbiology and Immunology, Brown University, Providence, United States
    Competing interests
    No competing interests declared.
  5. Yang Zhou

    Department of Molecular Microbiology and Immunology, Brown University, Providence, United States
    Competing interests
    No competing interests declared.
  6. Chun Geun Lee

    Department of Molecular Microbiology and Immunology, Brown University, Providence, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9514-3658
  7. Jack A Elias

    Department of Molecular Microbiology and Immunology, Brown University, Providence, United States
    For correspondence
    Jack_elias@brown.edu
    Competing interests
    Jack A Elias, is a cofounder of Elkurt Pharmaceuticals and Ocean Biomedical which develop therapeutics based on the 18 glycosyl hydrolase gene family.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3124-8557

Funding

Brown University (Research Seed Grant,GR300201)

  • Chun Geun Lee

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Kamle et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 633
    views
  • 184
    downloads
  • 6
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Suchitra Kamle
  2. Bing Ma
  3. Chang Min Lee
  4. Gail Schor
  5. Yang Zhou
  6. Chun Geun Lee
  7. Jack A Elias
(2022)
Host Chitinase 3-like-1 is a universal therapeutic target for SARS-CoV-2 viral variants in COVID-19
eLife 11:e78273.
https://doi.org/10.7554/eLife.78273

Share this article

https://doi.org/10.7554/eLife.78273

Further reading

    1. Microbiology and Infectious Disease
    Vandana Singh, Scot P Ouellette
    Research Article

    Chlamydia trachomatis is an obligate intracellular bacterial pathogen with a unique developmental cycle. It differentiates between two functional and morphological forms: the elementary body (EB) and the reticulate body (RB). The signals that trigger differentiation from one form to the other are unknown. EBs and RBs have distinctive characteristics that distinguish them, including their size, infectivity, proteome, and transcriptome. Intriguingly, they also differ in their overall redox status as EBs are oxidized and RBs are reduced. We hypothesize that alterations in redox may serve as a trigger for secondary differentiation. To test this, we examined the function of the primary antioxidant enzyme alkyl hydroperoxide reductase subunit C (AhpC), a well-known member of the peroxiredoxins family, in chlamydial growth and development. Based on our hypothesis, we predicted that altering the expression of ahpC would modulate chlamydial redox status and trigger earlier or delayed secondary differentiation. Therefore, we created ahpC overexpression and knockdown strains. During ahpC knockdown, ROS levels were elevated, and the bacteria were sensitive to a broad set of peroxide stresses. Interestingly, we observed increased expression of EB-associated genes and concurrent higher production of EBs at an earlier time in the developmental cycle, indicating earlier secondary differentiation occurs under elevated oxidation conditions. In contrast, overexpression of AhpC created a resistant phenotype against oxidizing agents and delayed secondary differentiation. Together, these results indicate that redox potential is a critical factor in developmental cycle progression. For the first time, our study provides a mechanism of chlamydial secondary differentiation dependent on redox status.

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Axelle Amen, Randy Yoo ... Matthijs M Jore
    Research Article

    Circulating sexual stages of Plasmodium falciparum (Pf) can be transmitted from humans to mosquitoes, thereby furthering the spread of malaria in the population. It is well established that antibodies can efficiently block parasite transmission. In search for naturally acquired antibodies targets on sexual stages, we established an efficient method for target-agnostic single B cell activation followed by high-throughput selection of human monoclonal antibodies (mAbs) reactive to sexual stages of Pf in the form of gametes and gametocyte extracts. We isolated mAbs reactive against a range of Pf proteins including well-established targets Pfs48/45 and Pfs230. One mAb, B1E11K, was cross-reactive to various proteins containing glutamate-rich repetitive elements expressed at different stages of the parasite life cycle. A crystal structure of two B1E11K Fab domains in complex with its main antigen, RESA, expressed on asexual blood stages, showed binding of B1E11K to a repeating epitope motif in a head-to-head conformation engaging in affinity-matured homotypic interactions. Thus, this mode of recognition of Pf proteins, previously described only for Pf circumsporozoite protein (PfCSP), extends to other repeats expressed across various stages. The findings augment our understanding of immune-pathogen interactions to repeating elements of the Plasmodium parasite proteome and underscore the potential of the novel mAb identification method used to provide new insights into the natural humoral immune response against Pf.