Unsuppressed HIV infection impairs T cell responses to SARS-CoV-2 infection and abrogates T cell cross-recognition

  1. Thandeka Nkosi
  2. Caroline Chasara
  3. Andrea O Papadopoulos  Is a corresponding author
  4. Tiza L Nguni
  5. Farina Karim
  6. Mahomed-Yunus S Moosa
  7. Inbal Gazy
  8. Kondwani Jambo
  9. COMMIT-KZN
  10. Willem Hanekom
  11. Alex Sigal
  12. Zaza M Ndhlovu  Is a corresponding author
  1. University of KwaZulu-Natal, South Africa
  2. Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Malawi

Abstract

In some instances, unsuppressed HIV has been associated with severe COVID-19 disease, but the mechanisms underpinning this susceptibility are still unclear. Here, we assessed the impact of HIV infection on the quality and epitope specificity of SARS-CoV-2 T cell responses in the first wave and second wave of the COVID-19 epidemic in South Africa. Flow cytometry was used to measure T cell responses following PBMC stimulation with SARS-CoV-2 peptide pools. Culture expansion was used to determine T cell immunodominance hierarchies and to assess potential SARS-CoV-2 escape from T cell recognition. HIV-seronegative individuals had significantly greater CD4+T cell responses against the Spike protein compared to the viremic PLWH. Absolute CD4 count correlated positively with SARS-CoV-2 specific CD4+ and CD8+ T cell responses (CD4 r= 0.5, p=0.03; CD8 r=0.5, p=0.001), whereas T cell activation was negatively correlated with CD4+ T cell responses (CD4 r= -0.7, p=0.04). There was diminished T cell cross-recognition between the two waves, which was more pronounced in individuals with unsuppressed HIV infection. Importantly, we identify four mutations in the Beta variant that resulted in abrogation of T cell recognition. Together, we show that unsuppressed HIV infection markedly impairs T cell responses to SARS-Cov-2 infection and diminishes T cell cross-recognition. These findings may partly explain the increased susceptibility of PLWH to severe COVID-19 and also highlights their vulnerability to emerging SARS-CoV-2 variants of concern.

Data availability

Responses: All source data files for the figures are now publicly available on our institutional website (Africa Health Research Institute database). The data can be accessed using this link: https://doi.org/10.23664/AHRI.SARS.CoV.2

Article and author information

Author details

  1. Thandeka Nkosi

    Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
    Competing interests
    The authors declare that no competing interests exist.
  2. Caroline Chasara

    Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6860-6111
  3. Andrea O Papadopoulos

    Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
    For correspondence
    andrea.papadopoulos@ahri.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5317-1418
  4. Tiza L Nguni

    Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
    Competing interests
    The authors declare that no competing interests exist.
  5. Farina Karim

    Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9698-016X
  6. Mahomed-Yunus S Moosa

    Department of Infectious Diseases, University of KwaZulu-Natal, Durban, South Africa
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6191-4023
  7. Inbal Gazy

    KwaZulu-Natal Research Innovation and Sequencing Platform, University of KwaZulu-Natal, Durban, South Africa
    Competing interests
    The authors declare that no competing interests exist.
  8. Kondwani Jambo

    Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
    Competing interests
    The authors declare that no competing interests exist.
  9. COMMIT-KZN

    Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
  10. Willem Hanekom

    Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
    Competing interests
    The authors declare that no competing interests exist.
  11. Alex Sigal

    Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8571-2004
  12. Zaza M Ndhlovu

    Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
    For correspondence
    zndhlovu@mgh.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2708-3315

Funding

Howard Hughes Medical Institute (55008743)

  • Zaza M Ndhlovu

Bill and Melinda Gates Foundation (INV-018944)

  • Alex Sigal

South Africa Medical Research Council (31026)

  • Willem Hanekom

Sub-Sahara African Network for TB and HIV Research Excellence (COL016)

  • Zaza M Ndhlovu

Africa Health Research Institute (LoA R82)

  • Zaza M Ndhlovu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Ethical Declaration: The study protocol was approved by the University of KwaZulu-Natal Biomedical Research Ethics Committee (BREC) (approval BREC/00001275/2020). Consenting adult patients (>18 years old) presenting at King Edward VIII, Inkosi Albert Luthuli Central Hospital, and Clairwood Hospital in Durban, South Africa, between 29 July to August November 2021 with PCR confirmed SARS-CoV-2 infection were enrolled into the study.

Reviewing Editor

  1. Joshua T Schiffer, Fred Hutchinson Cancer Research Center, United States

Publication history

  1. Received: March 4, 2022
  2. Preprint posted: April 6, 2022 (view preprint)
  3. Accepted: July 20, 2022
  4. Accepted Manuscript published: July 26, 2022 (version 1)
  5. Version of Record published: August 5, 2022 (version 2)

Copyright

© 2022, Nkosi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 442
    Page views
  • 189
    Downloads
  • 3
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Thandeka Nkosi
  2. Caroline Chasara
  3. Andrea O Papadopoulos
  4. Tiza L Nguni
  5. Farina Karim
  6. Mahomed-Yunus S Moosa
  7. Inbal Gazy
  8. Kondwani Jambo
  9. COMMIT-KZN
  10. Willem Hanekom
  11. Alex Sigal
  12. Zaza M Ndhlovu
(2022)
Unsuppressed HIV infection impairs T cell responses to SARS-CoV-2 infection and abrogates T cell cross-recognition
eLife 11:e78374.
https://doi.org/10.7554/eLife.78374

Further reading

    1. Immunology and Inflammation
    Rimma Laufer Britva, Aviad Keren ... Amos Gilhar
    Research Article

    Here, we have explored the involvement of innate lymphoid cells-type 1 (ILC1) in the pathogenesis of alopecia areata (AA), because we found them to be significantly increased around lesional and non-lesional HFs of AA patients. To further explore these unexpected findings, we first co-cultured autologous circulating ILC1-like cells (ILC1lc) with healthy, but stressed, organ-cultured human scalp hair follicles (HFs). ILClc induced all hallmarks of AA ex vivo: they significantly promoted premature, apoptosis-driven HF regression (catagen), HF cytotoxicity/dystrophy, and most important for AA pathogenesis, the collapse of the HFs physiological immune privilege. NKG2D-blocking or IFNγ-neutralizing antibodies antagonized this. In vivo, intradermal injection of autologous activated, NKG2D+/IFNγ-secreting ILC1lc into healthy human scalp skin xenotransplanted onto SCID/beige mice sufficed to rapidly induce characteristic AA lesions. This provides the first evidence that ILC1lc, which are positive for the ILC1 phenotype and negative for the classical NK markers, suffice to induce AA in previously healthy human HFs ex vivo and in vivo, and further questions the conventional wisdom that AA is always an autoantigen-dependent, CD8 +T cell-driven autoimmune disease.

    1. Epidemiology and Global Health
    2. Immunology and Inflammation
    Hangjie Zhang, Qianhui Hua ... Huakun Lv
    Research Article

    Background: Although inactivated COVID-19 vaccines are proven to be safe and effective in the general population, the dynamic response and duration of antibodies after vaccination in the real world should be further assessed.

    Methods: We enrolled 1067 volunteers who had been vaccinated with one or two doses of CoronaVac in Zhejiang Province, China. Another 90 healthy adults without previous vaccinations were recruited and vaccinated with three doses of CoronaVac, 28 days and 6 months apart. Serum samples were collected from multiple timepoints and analyzed for specific IgM/IgG and neutralizing antibodies (NAbs) for immunogenicity evaluation. Antibody responses to the Delta and Omicron variants were measured by pseudovirus-based neutralization tests.

    Results: Our results revealed that binding antibody IgM peaked 14-28 days after one dose of CoronaVac, while IgG and NAbs peaked approximately 1 month after the second dose then declined slightly over time. Antibody responses had waned by month 6 after vaccination and became undetectable in the majority of individuals at 12 months. Levels of NAbs to live SARS-CoV-2 were correlated with anti-SARS-CoV-2 IgG and NAbs to pseudovirus, but not IgM. Homologous booster around 6 months after primary vaccination activated anamnestic immunity and raised NAbs 25.5-fold. The neutralized fraction subsequently rose to 36.0% for Delta (p=0.03) and 4.3% for Omicron (p=0.004), and the response rate for Omicron rose from 7.9% (7/89) to 17.8% (16/90).

    Conclusions: Two doses of CoronaVac vaccine resulted in limited protection over a short duration. The inactivated vaccine booster can reverse the decrease of antibody levels to prime strain, but it does not elicit potent neutralization against Omicron; therefore, the optimization of booster procedures is vital.

    Funding: Key Research and Development Program of Zhejiang Province; Key Program of Health Commission of Zhejiang Province/ Science Foundation of National Health Commission; Major Program of Zhejiang Municipal Natural Science Foundation; Explorer Program of Zhejiang Municipal Natural Science Foundation.