Prenatal development of neonatal vocalizations
Abstract
Human and non-human primates produce rhythmical sounds as soon as they are born. These early vocalizations are important for soliciting the attention of caregivers. How they develop, remains a mystery. The orofacial movements necessary for producing these vocalizations have distinct spatiotemporal signatures. Therefore, their development could potentially be tracked over the course of prenatal life. We densely and longitudinally sampled fetal head and orofacial movements in marmoset monkeys using ultrasound imaging. We show that orofacial movements necessary for producing rhythmical vocalizations differentiate from a larger movement pattern that includes the entire head. We also show that signature features of marmoset infant contact calls emerge prenatally as a distinct pattern of orofacial movements. Our results establish that aspects of the sensorimotor development necessary for vocalizing occur prenatally, even before the production of sound.
Data availability
All data generated or analysed during this study are available on DRYAD.https://doi.org/10.5061/dryad.m905qfv1x
-
Data from: Prenatal development of neonatal vocalizationsDryad Digital Repository, doi:10.5061/dryad.m905qfv1x.
Article and author information
Author details
Funding
National Institute of Neurological Disorders and Stroke (R01NS054898)
- Asif A Ghazanfar
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#1908-18) of Princeton University.
Reviewing Editor
- Andrew J King, University of Oxford, United Kingdom
Version history
- Received: March 9, 2022
- Preprint posted: April 14, 2022 (view preprint)
- Accepted: July 11, 2022
- Accepted Manuscript published: July 26, 2022 (version 1)
- Version of Record published: August 19, 2022 (version 2)
Copyright
© 2022, Narayanan et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,973
- Page views
-
- 429
- Downloads
-
- 3
- Citations
Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Neuroscience
Pyramidal neurons, a mainstay of cortical regions, receive a plethora of inputs from various areas onto their morphologically distinct apical and basal trees. Both trees differentially contribute to the somatic response, defining distinct anatomical and possibly functional sub-units. To elucidate the contribution of each tree to the encoding of visual stimuli at the somatic level, we modeled the response pattern of a mouse L2/3 V1 pyramidal neuron to orientation tuned synaptic input. Towards this goal, we used a morphologically detailed computational model of a single cell that replicates electrophysiological and two-photon imaging data. Our simulations predict a synergistic effect of apical and basal trees on somatic action potential generation: basal tree activity, in the form of either depolarization or dendritic spiking, is necessary for producing somatic activity, despite the fact that most somatic spikes are heavily driven by apical dendritic spikes. This model provides evidence for synergistic computations taking place in the basal and apical trees of the L2/3 V1 neuron along with mechanistic explanations for tree-specific contributions and emphasizes the potential role of predictive and attentional feedback input in these cells.
-
- Neuroscience
- Structural Biology and Molecular Biophysics
Acid-sensing ion channels (ASICs) are trimeric proton-gated sodium channels. Recent work has shown that these channels play a role in necroptosis following prolonged acidic exposure like occurs in stroke. The C-terminus of ASIC1a is thought to mediate necroptotic cell death through interaction with receptor interacting serine threonine kinase 1 (RIPK1). This interaction is hypothesized to be inhibited at rest via an interaction between the C- and N-termini which blocks the RIPK1 binding site. Here, we use two transition metal ion FRET methods to investigate the conformational dynamics of the termini at neutral and acidic pH. We do not find evidence that the termini are close enough to be bound while the channel is at rest and find that the termini may modestly move closer together during acidification. At rest, the N-terminus adopts a conformation parallel to the membrane about 10 Å away. The distal end of the C-terminus may also spend time close to the membrane at rest. After acidification, the proximal portion of the N-terminus moves marginally closer to the membrane whereas the distal portion of the C-terminus swings away from the membrane. Together these data suggest that a new hypothesis for RIPK1 binding during stroke is needed.