Prenatal development of neonatal vocalizations

  1. Darshana Z Narayanan
  2. Daniel Y Takahashi  Is a corresponding author
  3. Lauren M Kelly
  4. Sabina I Hlavaty
  5. Junzhou Huang
  6. Asif A Ghazanfar  Is a corresponding author
  1. Princeton University, United States
  2. The University of Texas at Arlington, United States

Abstract

Human and non-human primates produce rhythmical sounds as soon as they are born. These early vocalizations are important for soliciting the attention of caregivers. How they develop, remains a mystery. The orofacial movements necessary for producing these vocalizations have distinct spatiotemporal signatures. Therefore, their development could potentially be tracked over the course of prenatal life. We densely and longitudinally sampled fetal head and orofacial movements in marmoset monkeys using ultrasound imaging. We show that orofacial movements necessary for producing rhythmical vocalizations differentiate from a larger movement pattern that includes the entire head. We also show that signature features of marmoset infant contact calls emerge prenatally as a distinct pattern of orofacial movements. Our results establish that aspects of the sensorimotor development necessary for vocalizing occur prenatally, even before the production of sound.

Data availability

All data generated or analysed during this study are available on DRYAD.https://doi.org/10.5061/dryad.m905qfv1x

The following data sets were generated

Article and author information

Author details

  1. Darshana Z Narayanan

    Princeton Neuroscience Institute, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Daniel Y Takahashi

    Princeton Neuroscience Institute, Princeton University, Princeton, United States
    For correspondence
    takahashiyd@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4972-001X
  3. Lauren M Kelly

    Princeton Neuroscience Institute, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Sabina I Hlavaty

    Department of Ecology and Evolutionary Biology, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Junzhou Huang

    Department of Computer Science and Engineering, The University of Texas at Arlington, Arlington, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Asif A Ghazanfar

    Princeton Neuroscience Institute, Princeton University, Princeton, United States
    For correspondence
    asifg@princeton.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1960-7470

Funding

National Institute of Neurological Disorders and Stroke (R01NS054898)

  • Asif A Ghazanfar

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#1908-18) of Princeton University.

Reviewing Editor

  1. Andrew J King, University of Oxford, United Kingdom

Publication history

  1. Received: March 9, 2022
  2. Accepted: July 11, 2022
  3. Accepted Manuscript published: July 26, 2022 (version 1)

Copyright

© 2022, Narayanan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 737
    Page views
  • 207
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Darshana Z Narayanan
  2. Daniel Y Takahashi
  3. Lauren M Kelly
  4. Sabina I Hlavaty
  5. Junzhou Huang
  6. Asif A Ghazanfar
(2022)
Prenatal development of neonatal vocalizations
eLife 11:e78485.
https://doi.org/10.7554/eLife.78485

Further reading

    1. Neuroscience
    Cecilia Gallego-Carracedo et al.
    Research Article

    The spiking activity of populations of cortical neurons is well described by the dynamics of a small number of population-wide covariance patterns, the 'latent dynamics'. These latent dynamics are largely driven by the same correlated synaptic currents across the circuit that determine the generation of local field potentials (LFP). Yet, the relationship between latent dynamics and LFPs remains largely unexplored. Here, we characterised this relationship for three different regions of primate sensorimotor cortex during reaching. The correlation between latent dynamics and LFPs was frequency-dependent and varied across regions. However, for any given region, this relationship remained stable throughout the behaviour: in each of primary motor and premotor cortices, the LFP-latent dynamics correlation profile was remarkably similar between movement planning and execution. These robust associations between LFPs and neural population latent dynamics help bridge the wealth of studies reporting neural correlates of behaviour using either type of recordings.

    1. Neuroscience
    Jonathan S Tsay et al.
    Review Article

    Multiple learning processes contribute to successful goal-directed actions in the face of changing physiological states, biomechanical constraints, and environmental contexts. Amongst these processes, implicit sensorimotor adaptation is of primary importance, ensuring that movements remain well-calibrated and accurate. A large body of work on reaching movements has emphasized how adaptation centers on an iterative process designed to minimize visual errors. The role of proprioception has been largely neglected, thought to play a passive role in which proprioception is affected by the visual error but does not directly contribute to adaptation. Here, we present an alternative to this visuo-centric framework, outlining a model in which implicit adaptation acts to minimize a proprioceptive error, the distance between the perceived hand position and its intended goal. This proprioceptive re-alignment model (PReMo) is consistent with many phenomena that have previously been interpreted in terms of learning from visual errors, and offers a parsimonious account of numerous unexplained phenomena. Cognizant that the evidence for PReMo rests on correlational studies, we highlight core predictions to be tested in future experiments, as well as note potential challenges for a proprioceptive-based perspective on implicit adaptation.