Autoantibody discovery across monogenic, acquired, and COVID19-associated autoimmunity with scalable PhIP-Seq

  1. Sara E Vazquez
  2. Sabrina A Mann
  3. Aaron Bodansky
  4. Andrew F Kung
  5. Zoe Quandt
  6. Elise M N Ferré
  7. Nils Landegren
  8. Daniel Eriksson
  9. Paul Bastard
  10. Shen-Ying Zhang
  11. Jamin Liu
  12. Anthea Mitchell
  13. Irina Proekt
  14. David Yu
  15. Caleigh Mandel-Brehm
  16. Chung-Yu Wang
  17. Brenda Miao
  18. Gavin Sowa
  19. Kelsey Zorn
  20. Alice Y Chan
  21. Veronica M Tagi
  22. Chisato Shimizu
  23. Adriana Tremoulet
  24. Kara Lynch
  25. Michael R Wilson
  26. Olle Kämpe
  27. Kerry Dobbs
  28. Ottavia M Delmonte
  29. Rosa Bacchetta
  30. Luigi D Notarangelo
  31. Jane C Burns
  32. Jean-Laurent Casanova
  33. Michail S Lionakis
  34. Troy R Torgerson
  35. Mark S Anderson  Is a corresponding author
  36. Joseph L DeRisi  Is a corresponding author
  1. University of California, San Francisco, United States
  2. National Institute of Allergy and Infectious Diseases, United States
  3. Karolinska Institute, Sweden
  4. Rockefeller University, United States
  5. Stanford University, United States
  6. University of California, San Diego, United States
  7. Seattle Children's Research Institute, United States

Abstract

Phage Immunoprecipitation-Sequencing (PhIP-Seq) allows for unbiased, proteome-wide autoantibody discovery across a variety of disease settings, with identification of disease-specific autoantigens providing new insight into previously poorly understood forms of immune dysregulation. Despite several successful implementations of PhIP-Seq for autoantigen discovery, including our previous work (Vazquez et al. 2020), current protocols are inherently difficult to scale to accommodate large cohorts of cases and importantly, healthy controls. Here, we develop and validate a high throughput extension of PhIP-seq in various etiologies of autoimmune and inflammatory diseases, including APS1, IPEX, RAG1/2 deficiency, Kawasaki Disease (KD), Multisystem Inflammatory Syndrome in Children (MIS-C), and finally, mild and severe forms of COVID19. We demonstrate that these scaled datasets enable machine-learning approaches that result in robust prediction of disease status, as well as the ability to detect both known and novel autoantigens, such as PDYN in APS1 patients, and intestinally expressed proteins BEST4 and BTNL8 in IPEX patients. Remarkably, BEST4 antibodies were also found in 2 patients with RAG1/2 deficiency, one of whom had very early onset IBD. Scaled PhIP-Seq examination of both MIS-C and KD demonstrated rare, overlapping antigens, including CGNL1, as well as several strongly enriched putative pneumonia-associated antigens in severe COVID19, including the endosomal protein EEA1. Together, scaled PhIP-Seq provides a valuable tool for broadly assessing both rare and common autoantigen overlap between autoimmune diseases of varying origins and etiologies.

Data availability

Full PhIP-Seq data for all cohorts presented is available for download at Dryad at https://doi.org/10.5061/dryad.qfttdz0k4. All available deidentified clinical data for this study is available in Supplemental Table 1.

The following data sets were generated

Article and author information

Author details

  1. Sara E Vazquez

    Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0601-7001
  2. Sabrina A Mann

    Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4970-1073
  3. Aaron Bodansky

    Department of Pediatric Critical Care Medicine, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Andrew F Kung

    Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Zoe Quandt

    Department of Medicine, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Elise M N Ferré

    Fungal Pathogenesis Unit, National Institute of Allergy and Infectious Diseases, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Nils Landegren

    Department of Medicine, Karolinska Institute, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6163-9540
  8. Daniel Eriksson

    Department of Medicine, Karolinska Institute, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5473-3312
  9. Paul Bastard

    St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Shen-Ying Zhang

    St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Jamin Liu

    Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Anthea Mitchell

    Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Irina Proekt

    Diabetes Center, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. David Yu

    Diabetes Center, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Caleigh Mandel-Brehm

    Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. Chung-Yu Wang

    Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  17. Brenda Miao

    Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3393-9837
  18. Gavin Sowa

    School of Medicine, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2089-8116
  19. Kelsey Zorn

    Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  20. Alice Y Chan

    Department of Pediatrics, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  21. Veronica M Tagi

    Division of Stem Cell Transplantation and Regenerative Medicine, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  22. Chisato Shimizu

    Kawasaki Disease Research Center, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  23. Adriana Tremoulet

    Kawasaki Disease Research Center, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  24. Kara Lynch

    Department of Laboratory Medicine, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  25. Michael R Wilson

    Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8705-5084
  26. Olle Kämpe

    Department of Medicine, Karolinska Institute, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6091-9914
  27. Kerry Dobbs

    Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3432-3137
  28. Ottavia M Delmonte

    Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  29. Rosa Bacchetta

    Division of Stem Cell Transplantation and Regenerative Medicine, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  30. Luigi D Notarangelo

    Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  31. Jane C Burns

    Kawasaki Disease Research Center, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  32. Jean-Laurent Casanova

    St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  33. Michail S Lionakis

    Fungal Pathogenesis Section, National Institute of Allergy and Infectious Diseases, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  34. Troy R Torgerson

    Seattle Children's Research Institute, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3489-5036
  35. Mark S Anderson

    Diabetes Center, University of California, San Francisco, San Francisco, United States
    For correspondence
    Mark.Anderson@ucsf.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3093-4758
  36. Joseph L DeRisi

    Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
    For correspondence
    joe@derisilab.ucsf.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4611-9205

Funding

National Institute of Allergy and Infectious Diseases (5P01AI118688)

  • Mark S Anderson

UCSF-CTSI TL1 (TR001871)

  • Zoe Quandt

Division of Intramural Research, National Institute of Allergy and Infectious Diseases (1 ZIA AI001222)

  • Luigi D Notarangelo

National Institute of Child Health and Development (1R61HD105590)

  • Adriana Tremoulet
  • Jane C Burns

Multiple sources**

  • Jean-Laurent Casanova

FRM (EA20170638020)

  • Paul Bastard

MD-PhD program of the Imagine Institute

  • Paul Bastard

National Institute of Allergy and Infectious Diseases (1ZIAAI001175)

  • Michail S Lionakis

National Institute of Diabetes and Digestive and Kidney Diseases (1F30DK123915)

  • Sara E Vazquez

Chan Zuckerberg Biohub

  • Joseph L DeRisi

Parker Institute for Cancer Immunotherapy

  • Mark S Anderson

Juvenile Diabetes Research Foundation United States of America

  • Mark S Anderson

Helmsley Charitable Trust

  • Mark S Anderson

National Institute of General Medical Sciences (5T32GM007618)

  • Mark S Anderson

American Diabetes Association (1-19-PDF-131)

  • Zoe Quandt

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.**multiple sources includes: The Laboratory of Human Genetics of Infectious Diseases is supported by the Howard Hughes Medical Institute, the Rockefeller University, the St. Giles Foundation, the National Institutes of Health (NIH) (R01AI088364 and R01AI163029), the National Center for Advancing Translational Sciences (NCATS), NIH Clinical and Translational Science Award (CTSA) program (UL1TR001866), the Fisher Center for Alzheimer's Research Foundation, the Meyer Foundation, the JPB Foundation, the French National Research Agency (ANR) under the Investments for the Future" program (ANR-10-IAHU-01)

Reviewing Editor

  1. Antony Rosen, Johns Hopkins University School of Medicine, United States

Ethics

Human subjects: Detailed information on consent, where applicable, is available in the methods section of the manuscript.

Version history

  1. Received: March 23, 2022
  2. Preprint posted: March 25, 2022 (view preprint)
  3. Accepted: October 10, 2022
  4. Accepted Manuscript published: October 27, 2022 (version 1)
  5. Version of Record published: November 30, 2022 (version 2)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 1,870
    views
  • 292
    downloads
  • 18
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sara E Vazquez
  2. Sabrina A Mann
  3. Aaron Bodansky
  4. Andrew F Kung
  5. Zoe Quandt
  6. Elise M N Ferré
  7. Nils Landegren
  8. Daniel Eriksson
  9. Paul Bastard
  10. Shen-Ying Zhang
  11. Jamin Liu
  12. Anthea Mitchell
  13. Irina Proekt
  14. David Yu
  15. Caleigh Mandel-Brehm
  16. Chung-Yu Wang
  17. Brenda Miao
  18. Gavin Sowa
  19. Kelsey Zorn
  20. Alice Y Chan
  21. Veronica M Tagi
  22. Chisato Shimizu
  23. Adriana Tremoulet
  24. Kara Lynch
  25. Michael R Wilson
  26. Olle Kämpe
  27. Kerry Dobbs
  28. Ottavia M Delmonte
  29. Rosa Bacchetta
  30. Luigi D Notarangelo
  31. Jane C Burns
  32. Jean-Laurent Casanova
  33. Michail S Lionakis
  34. Troy R Torgerson
  35. Mark S Anderson
  36. Joseph L DeRisi
(2022)
Autoantibody discovery across monogenic, acquired, and COVID19-associated autoimmunity with scalable PhIP-Seq
eLife 11:e78550.
https://doi.org/10.7554/eLife.78550

Share this article

https://doi.org/10.7554/eLife.78550

Further reading

    1. Cell Biology
    2. Immunology and Inflammation
    Kevin Portmann, Aline Linder, Klaus Eyer
    Research Article

    Cytokine polyfunctionality is a well-established concept in immune cells, especially T cells, and their ability to concurrently produce multiple cytokines has been associated with better immunological disease control and subsequent effectiveness during infection and disease. To date, only little is known about the secretion dynamics of those cells, masked by the widespread deployment of mainly time-integrated endpoint measurement techniques that do not easily differentiate between concurrent and sequential secretion. Here, we employed a single-cell microfluidic platform capable of resolving the secretion dynamics of individual PBMCs. To study the dynamics of poly-cytokine secretion, as well as the dynamics of concurrent and sequential polyfunctionality, we analyzed the response at different time points after ex vivo activation. First, we observed the simultaneous secretion of cytokines over the measurement time for most stimulants in a subpopulation of cells only. Second, polyfunctionality generally decreased with prolonged stimulation times and revealed no correlation with the concentration of secreted cytokines in response to stimulation. However, we observed a general trend towards higher cytokine secretion in polyfunctional cells, with their secretion dynamics being distinctly different from mono-cytokine-secreting cells. This study provided insights into the distinct secretion behavior of heterogenous cell populations after stimulation with well-described agents and such a system could provide a better understanding of various immune dynamics in therapy and disease.

    1. Immunology and Inflammation
    2. Medicine
    Joanna C Porter, Jamie Inshaw ... Venizelos Papayannopoulos
    Research Article

    Background:

    Prinflammatory extracellular chromatin from neutrophil extracellular traps (NETs) and other cellular sources is found in COVID-19 patients and may promote pathology. We determined whether pulmonary administration of the endonuclease dornase alfa reduced systemic inflammation by clearing extracellular chromatin.

    Methods:

    Eligible patients were randomized (3:1) to the best available care including dexamethasone (R-BAC) or to BAC with twice-daily nebulized dornase alfa (R-BAC + DA) for seven days or until discharge. A 2:1 ratio of matched contemporary controls (CC-BAC) provided additional comparators. The primary endpoint was the improvement in C-reactive protein (CRP) over time, analyzed using a repeated-measures mixed model, adjusted for baseline factors.

    Results:

    We recruited 39 evaluable participants: 30 randomized to dornase alfa (R-BAC +DA), 9 randomized to BAC (R-BAC), and included 60 CC-BAC participants. Dornase alfa was well tolerated and reduced CRP by 33% compared to the combined BAC groups (T-BAC). Least squares (LS) mean post-dexamethasone CRP fell from 101.9 mg/L to 23.23 mg/L in R-BAC +DA participants versus a 99.5 mg/L to 34.82 mg/L reduction in the T-BAC group at 7 days; p=0.01. The anti-inflammatory effect of dornase alfa was further confirmed with subgroup and sensitivity analyses on randomised participants only, mitigating potential biases associated with the use of CC-BAC participants. Dornase alfa increased live discharge rates by 63% (HR 1.63, 95% CI 1.01–2.61, p=0.03), increased lymphocyte counts (LS mean: 1.08 vs 0.87, p=0.02) and reduced circulating cf-DNA and the coagulopathy marker D-dimer (LS mean: 570.78 vs 1656.96 μg/mL, p=0.004).

    Conclusions:

    Dornase alfa reduces pathogenic inflammation in COVID-19 pneumonia, demonstrating the benefit of cost-effective therapies that target extracellular chromatin.

    Funding:

    LifeArc, Breathing Matters, The Francis Crick Institute (CRUK, Medical Research Council, Wellcome Trust).

    Clinical trial number:

    NCT04359654.