A high-throughput yeast display approach to profile pathogen proteomes for MHC-II binding

  1. Brooke D Huisman
  2. Zheng Dai
  3. David K Gifford
  4. Michael E Birnbaum  Is a corresponding author
  1. Massachusetts Institute of Technology, United States

Abstract

T cells play a critical role in the adaptive immune response, recognizing peptide antigens presented on the cell surface by Major Histocompatibility Complex (MHC) proteins. While assessing peptides for MHC binding is an important component of probing these interactions, traditional assays for testing peptides of interest for MHC binding are limited in throughput. Here we present a yeast display-based platform for assessing the binding of tens of thousands of user-defined peptides in a high throughput manner. We apply this approach to assess a tiled library covering the SARS-CoV-2 proteome and four dengue virus serotypes for binding to human class II MHCs, including HLA-DR401, -DR402, and -DR404. While the peptide datasets show broad agreement with previously described MHC-binding motifs, they additionally reveal experimentally validated computational false positives and false negatives. We therefore present this approach as able to complement current experimental datasets and computational predictions. Further, our yeast display approach underlines design considerations for epitope identification experiments and serves as a framework for examining relationships between viral conservation and MHC binding, which can be used to identify potentially high-interest peptide binders from viral proteins. These results demonstrate the utility of our approach to determine peptide-MHC binding interactions in a manner that can supplement and potentially enhance current algorithm-based approaches.

Data availability

All deep sequencing data are deposited on the Sequence Read Archive (SRA), with accession codes PRJNA806475 [https://www.ncbi.nlm.nih.gov/bioproject/PRJNA806475] and PRJNA708266 [https://www.ncbi.nlm.nih.gov/bioproject/PRJNA708266]. Processed peptide data is provided as a supplemental dataset with this submission. Source data for FP measurements listed in Figure 4 is provided with this submission.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Brooke D Huisman

    Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6229-6498
  2. Zheng Dai

    Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    No competing interests declared.
  3. David K Gifford

    Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    David K Gifford, is a founder of ThinkTx..
  4. Michael E Birnbaum

    Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, United States
    For correspondence
    mbirnb@mit.edu
    Competing interests
    Michael E Birnbaum, is an equity holder in 3T Biosciences, and is a co-founder, equity holder, and consultant of Viralogic Therapeutics and Abata Therapeutics..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2281-3518

Funding

National Institutes of Health (P30-CA14051)

  • Michael E Birnbaum

David and Lucile Packard Foundation

  • Michael E Birnbaum

Schmidt Futures

  • David K Gifford
  • Michael E Birnbaum

National Science Foundation

  • Brooke D Huisman

National Institutes of Health (U19-AI110495)

  • Michael E Birnbaum

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Satyajit Rath, Indian Institute of Science Education and Research (IISER), India

Version history

  1. Preprint posted: February 24, 2022 (view preprint)
  2. Received: March 12, 2022
  3. Accepted: July 4, 2022
  4. Accepted Manuscript published: July 4, 2022 (version 1)
  5. Version of Record published: July 18, 2022 (version 2)

Copyright

© 2022, Huisman et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,329
    views
  • 433
    downloads
  • 10
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Brooke D Huisman
  2. Zheng Dai
  3. David K Gifford
  4. Michael E Birnbaum
(2022)
A high-throughput yeast display approach to profile pathogen proteomes for MHC-II binding
eLife 11:e78589.
https://doi.org/10.7554/eLife.78589

Share this article

https://doi.org/10.7554/eLife.78589

Further reading

    1. Genetics and Genomics
    2. Immunology and Inflammation
    Jean-David Larouche, Céline M Laumont ... Claude Perreault
    Research Article

    Transposable elements (TEs) are repetitive sequences representing ~45% of the human and mouse genomes and are highly expressed by medullary thymic epithelial cells (mTECs). In this study, we investigated the role of TEs on T-cell development in the thymus. We performed multiomic analyses of TEs in human and mouse thymic cells to elucidate their role in T-cell development. We report that TE expression in the human thymus is high and shows extensive age- and cell lineage-related variations. TE expression correlates with multiple transcription factors in all cell types of the human thymus. Two cell types express particularly broad TE repertoires: mTECs and plasmacytoid dendritic cells (pDCs). In mTECs, transcriptomic data suggest that TEs interact with transcription factors essential for mTEC development and function (e.g., PAX1 and REL), and immunopeptidomic data showed that TEs generate MHC-I-associated peptides implicated in thymocyte education. Notably, AIRE, FEZF2, and CHD4 regulate small yet non-redundant sets of TEs in murine mTECs. Human thymic pDCs homogenously express large numbers of TEs that likely form dsRNA, which can activate innate immune receptors, potentially explaining why thymic pDCs constitutively secrete IFN ɑ/β. This study highlights the diversity of interactions between TEs and the adaptive immune system. TEs are genetic parasites, and the two thymic cell types most affected by TEs (mTEcs and pDCs) are essential to establishing central T-cell tolerance. Therefore, we propose that orchestrating TE expression in thymic cells is critical to prevent autoimmunity in vertebrates.

    1. Immunology and Inflammation
    Toyoshi Yanagihara, Kentaro Hata ... Isamu Okamoto
    Research Article

    Anticancer treatments can result in various adverse effects, including infections due to immune suppression/dysregulation and drug-induced toxicity in the lung. One of the major opportunistic infections is Pneumocystis jirovecii pneumonia (PCP), which can cause severe respiratory complications and high mortality rates. Cytotoxic drugs and immune-checkpoint inhibitors (ICIs) can induce interstitial lung diseases (ILDs). Nonetheless, the differentiation of these diseases can be difficult, and the pathogenic mechanisms of such diseases are not yet fully understood. To better comprehend the immunophenotypes, we conducted an exploratory mass cytometry analysis of immune cell subsets in bronchoalveolar lavage fluid from patients with PCP, cytotoxic drug-induced ILD (DI-ILD), and ICI-associated ILD (ICI-ILD) using two panels containing 64 markers. In PCP, we observed an expansion of the CD16+ T cell population, with the highest CD16+ T proportion in a fatal case. In ICI-ILD, we found an increase in CD57+ CD8+ T cells expressing immune checkpoints (TIGIT+ LAG3+ TIM-3+ PD-1+), FCRL5+ B cells, and CCR2+ CCR5+ CD14+ monocytes. These findings uncover the diverse immunophenotypes and possible pathomechanisms of cancer treatment-related pneumonitis.