Subfunctionalized expression drives evolutionary retention of ribosomal protein paralogs Rps27 and Rps27l in vertebrates

  1. Adele Francis Xu
  2. Rut Molinuevo
  3. Elisa Fazzari
  4. Harrison Tom
  5. Zijian Zhang
  6. Julien Menendez
  7. Kerriann M Casey
  8. Davide Ruggero
  9. Lindsay Hinck
  10. Jonathan K Pritchard
  11. Maria Barna  Is a corresponding author
  1. Stanford University, United States
  2. University of California, Santa Cruz, United States
  3. University of California, Los Angeles, United States
  4. University of California, San Francisco, United States

Abstract

The formation of paralogs through gene duplication is a core evolutionary process. For paralogs that encode components of protein complexes such as the ribosome, a central question is whether they encode functionally distinct proteins, or whether they exist to maintain appropriate total expression of equivalent proteins. Here, we systematically tested evolutionary models of paralog function using the ribosomal protein paralogs Rps27 (eS27) and Rps27l (eS27L) as a case study. Evolutionary analysis suggests that Rps27 and Rps27l likely arose during whole-genome duplication(s) in a common vertebrate ancestor. We show that Rps27 and Rps27l have inversely correlated mRNA abundance across mouse cell types, with the highest Rps27 in lymphocytes and the highest Rps27l in mammary alveolar cells and hepatocytes. By endogenously tagging the Rps27 and Rps27l proteins, we demonstrate that Rps27- and Rps27l-ribosomes associate preferentially with different transcripts. Furthermore, murine Rps27 and Rps27l loss-of-function alleles are homozygous lethal at different developmental stages. However, strikingly, expressing Rps27 protein from the endogenous Rps27l locus or vice versa completely rescues loss-of-function lethality and yields mice with no detectable deficits. Together, these findings suggest that Rps27 and Rps27l are evolutionarily retained because their subfunctionalized expression patterns render both genes necessary to achieve the requisite total expression of two equivalent proteins across cell types. Our work represents the most in-depth characterization of a mammalian ribosomal protein paralog to date and highlights the importance of considering both protein function and expression when investigating paralogs.

Data availability

Ribosome profiling sequencing data have been deposited in GEO under accession code GSE201845. Other data generated in this study are provided in the supplementary materials and Source Data files. Code used for data analysis is available at https://gitfront.io/r/adelefxu/f94QE89EJwyp/eS27-paralogs/.

The following data sets were generated
The following previously published data sets were used
    1. Han X
    2. Guo G
    3. et al
    (2018) MCA DGE Data
    Figshare, doi:10.6084/m9.figshare.5435866.v8.

Article and author information

Author details

  1. Adele Francis Xu

    Department of Genetics, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3332-5285
  2. Rut Molinuevo

    Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Elisa Fazzari

    Helen Diller Family Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Harrison Tom

    Helen Diller Family Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Zijian Zhang

    Department of Chemical and Systems Biology, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Julien Menendez

    Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Kerriann M Casey

    Department of Biology, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4228-928X
  8. Davide Ruggero

    Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9444-5865
  9. Lindsay Hinck

    Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Jonathan K Pritchard

    Department of Genetics, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8828-5236
  11. Maria Barna

    Department of Genetics, Stanford University, Stanford, United States
    For correspondence
    mbarna@stanford.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6843-4396

Funding

National Institutes of Health (F30HD100123)

  • Adele Francis Xu

Stanford Bio-X

  • Adele Francis Xu

National Institutes of Health (5R01HG008140)

  • Jonathan K Pritchard

New York Stem Cell Foundation (NYSCF-R-I36)

  • Maria Barna

National Institutes of Health (R01HD086634)

  • Maria Barna

Alfred P. Sloan Foundation

  • Maria Barna

Pew Charitable Trusts

  • Maria Barna

National Institutes of Health (R01HD098722)

  • Lindsay Hinck

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Shigehiro Kuraku, National Institute of Genetics, Japan

Ethics

Animal experimentation: All animal work was reviewed and approved by the Stanford Administrative Panel on Laboratory Animal Care (APLAC, protocol #27463). The Stanford APLAC is accredited by the American Association for the Accreditation of Laboratory Animal Care. All mice used in the study were housed at Stanford University except where otherwise noted. CRISPR-edited mouse lines were generated at the Gladstone Institute Transgenic Gene Targeting Core (San Francisco, CA). All animal procedures were approved by the Institutional Animal Care and Use Committee at the University of California, San Francisco (protocol #AN180952-01B).

Version history

  1. Received: March 16, 2022
  2. Preprint posted: May 4, 2022 (view preprint)
  3. Accepted: June 9, 2023
  4. Accepted Manuscript published: June 12, 2023 (version 1)
  5. Version of Record published: June 30, 2023 (version 2)

Copyright

© 2023, Xu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,699
    views
  • 145
    downloads
  • 3
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Adele Francis Xu
  2. Rut Molinuevo
  3. Elisa Fazzari
  4. Harrison Tom
  5. Zijian Zhang
  6. Julien Menendez
  7. Kerriann M Casey
  8. Davide Ruggero
  9. Lindsay Hinck
  10. Jonathan K Pritchard
  11. Maria Barna
(2023)
Subfunctionalized expression drives evolutionary retention of ribosomal protein paralogs Rps27 and Rps27l in vertebrates
eLife 12:e78695.
https://doi.org/10.7554/eLife.78695

Share this article

https://doi.org/10.7554/eLife.78695

Further reading

    1. Computational and Systems Biology
    2. Evolutionary Biology
    Kenya Hitomi, Yoichiro Ishii, Bei-Wen Ying
    Research Article

    As the genome encodes the information crucial for cell growth, a sizeable genomic deficiency often causes a significant decrease in growth fitness. Whether and how the decreased growth fitness caused by genome reduction could be compensated by evolution was investigated here. Experimental evolution with an Escherichia coli strain carrying a reduced genome was conducted in multiple lineages for approximately 1000 generations. The growth rate, which largely declined due to genome reduction, was considerably recovered, associated with the improved carrying capacity. Genome mutations accumulated during evolution were significantly varied across the evolutionary lineages and were randomly localized on the reduced genome. Transcriptome reorganization showed a common evolutionary direction and conserved the chromosomal periodicity, regardless of highly diversified gene categories, regulons, and pathways enriched in the differentially expressed genes. Genome mutations and transcriptome reorganization caused by evolution, which were found to be dissimilar to those caused by genome reduction, must have followed divergent mechanisms in individual evolutionary lineages. Gene network reconstruction successfully identified three gene modules functionally differentiated, which were responsible for the evolutionary changes of the reduced genome in growth fitness, genome mutation, and gene expression, respectively. The diversity in evolutionary approaches improved the growth fitness associated with the homeostatic transcriptome architecture as if the evolutionary compensation for genome reduction was like all roads leading to Rome.

    1. Evolutionary Biology
    Case Vincent Miller, Jen A Bright ... Michael Pittman
    Research Article

    Enantiornithines were the dominant birds of the Mesozoic, but understanding of their diet is still tenuous. We introduce new data on the enantiornithine family Bohaiornithidae, famous for their large size and powerfully built teeth and claws. In tandem with previously published data, we comment on the breadth of enantiornithine ecology and potential patterns in which it evolved. Body mass, jaw mechanical advantage, finite element analysis of the jaw, and traditional morphometrics of the claws and skull are compared between bohaiornithids and living birds. We find bohaiornithids to be more ecologically diverse than any other enantiornithine family: Bohaiornis and Parabohaiornis are similar to living plant-eating birds; Longusunguis resembles raptorial carnivores; Zhouornis is similar to both fruit-eating birds and generalist feeders; and Shenqiornis and Sulcavis plausibly ate fish, plants, or a mix of both. We predict the ancestral enantiornithine bird to have been a generalist which ate a wide variety of foods. However, more quantitative data from across the enantiornithine tree is needed to refine this prediction. By the Early Cretaceous, enantiornithine birds had diversified into a variety of ecological niches like crown birds after the K-Pg extinction, adding to the evidence that traits unique to crown birds cannot completely explain their ecological success.