Subfunctionalized expression drives evolutionary retention of ribosomal protein paralogs Rps27 and Rps27l in vertebrates
Abstract
The formation of paralogs through gene duplication is a core evolutionary process. For paralogs that encode components of protein complexes such as the ribosome, a central question is whether they encode functionally distinct proteins, or whether they exist to maintain appropriate total expression of equivalent proteins. Here, we systematically tested evolutionary models of paralog function using the ribosomal protein paralogs Rps27 (eS27) and Rps27l (eS27L) as a case study. Evolutionary analysis suggests that Rps27 and Rps27l likely arose during whole-genome duplication(s) in a common vertebrate ancestor. We show that Rps27 and Rps27l have inversely correlated mRNA abundance across mouse cell types, with the highest Rps27 in lymphocytes and the highest Rps27l in mammary alveolar cells and hepatocytes. By endogenously tagging the Rps27 and Rps27l proteins, we demonstrate that Rps27- and Rps27l-ribosomes associate preferentially with different transcripts. Furthermore, murine Rps27 and Rps27l loss-of-function alleles are homozygous lethal at different developmental stages. However, strikingly, expressing Rps27 protein from the endogenous Rps27l locus or vice versa completely rescues loss-of-function lethality and yields mice with no detectable deficits. Together, these findings suggest that Rps27 and Rps27l are evolutionarily retained because their subfunctionalized expression patterns render both genes necessary to achieve the requisite total expression of two equivalent proteins across cell types. Our work represents the most in-depth characterization of a mammalian ribosomal protein paralog to date and highlights the importance of considering both protein function and expression when investigating paralogs.
Data availability
Ribosome profiling sequencing data have been deposited in GEO under accession code GSE201845. Other data generated in this study are provided in the supplementary materials and Source Data files. Code used for data analysis is available at https://gitfront.io/r/adelefxu/f94QE89EJwyp/eS27-paralogs/.
-
Subfunctionalized expression drives evolutionary retention of ribosomal protein paralogs in vertebratesNCBI Gene Expression Omnibus, GSE201845.
-
MCA DGE DataFigshare, doi:10.6084/m9.figshare.5435866.v8.
-
Single-cell RNA-seq data from Smart-seq2 sequencing of FACS sorted cells (v2)Figshare, doi:10.6084/m9.figshare.5829687.v8.
-
Differentiation dynamics of mammary epithelial cells revealed by single-cell RNA-sequencingNCBI Gene Expression Omnibus, GSE106273.
Article and author information
Author details
Funding
National Institutes of Health (F30HD100123)
- Adele Francis Xu
Stanford Bio-X
- Adele Francis Xu
National Institutes of Health (5R01HG008140)
- Jonathan K Pritchard
New York Stem Cell Foundation (NYSCF-R-I36)
- Maria Barna
National Institutes of Health (R01HD086634)
- Maria Barna
Alfred P. Sloan Foundation
- Maria Barna
Pew Charitable Trusts
- Maria Barna
National Institutes of Health (R01HD098722)
- Lindsay Hinck
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: All animal work was reviewed and approved by the Stanford Administrative Panel on Laboratory Animal Care (APLAC, protocol #27463). The Stanford APLAC is accredited by the American Association for the Accreditation of Laboratory Animal Care. All mice used in the study were housed at Stanford University except where otherwise noted. CRISPR-edited mouse lines were generated at the Gladstone Institute Transgenic Gene Targeting Core (San Francisco, CA). All animal procedures were approved by the Institutional Animal Care and Use Committee at the University of California, San Francisco (protocol #AN180952-01B).
Reviewing Editor
- Shigehiro Kuraku, National Institute of Genetics, Japan
Version history
- Received: March 16, 2022
- Preprint posted: May 4, 2022 (view preprint)
- Accepted: June 9, 2023
- Accepted Manuscript published: June 12, 2023 (version 1)
- Version of Record published: June 30, 2023 (version 2)
Copyright
© 2023, Xu et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 753
- Page views
-
- 95
- Downloads
-
- 1
- Citations
Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Ecology
- Evolutionary Biology
Temperature determines the geographical distribution of organisms and affects the outbreak and damage of pests. Insects seasonal polyphenism is a successful strategy adopted by some species to adapt the changeable external environment. Cacopsylla chinensis (Yang & Li) showed two seasonal morphotypes, summer-form and winter-form, with significant differences in morphological characteristics. Low temperature is the key environmental factor to induce its transition from summer-form to winter-form. However, the detailed molecular mechanism remains unknown. Here, we firstly confirmed that low temperature of 10 °C induced the transition from summer-form to winter-form by affecting the cuticle thickness and chitin content. Subsequently, we demonstrated that CcTRPM functions as a temperature receptor to regulate this transition. In addition, miR-252 was identified to mediate the expression of CcTRPM to involve in this morphological transition. Finally, we found CcTre1 and CcCHS1, two rate-limiting enzymes of insect chitin biosyntheis, act as the critical down-stream signal of CcTRPM in mediating this behavioral transition. Taken together, our results revealed that a signal transduction cascade mediates the seasonal polyphenism in C. chinensis. These findings not only lay a solid foundation for fully clarifying the ecological adaptation mechanism of C. chinensis outbreak, but also broaden our understanding about insect polymorphism.
-
- Evolutionary Biology
Juvenile undernutrition has lasting effects on adult metabolism of the affected individuals, but it is unclear how adult physiology is shaped over evolutionary time by natural selection driven by juvenile undernutrition. We combined RNAseq, targeted metabolomics, and genomics to study the consequences of evolution under juvenile undernutrition for metabolism of reproductively active adult females of Drosophila melanogaster. Compared to Control populations maintained on standard diet, Selected populations maintained for over 230 generations on a nutrient-poor larval diet evolved major changes in adult gene expression and metabolite abundance, in particular affecting amino acid and purine metabolism. The evolved differences in adult gene expression and metabolite abundance between Selected and Control populations were positively correlated with the corresponding differences previously reported for Selected versus Control larvae. This implies that genetic variants affect both stages similarly. Even when well fed, the metabolic profile of Selected flies resembled that of flies subject to starvation. Finally, Selected flies had lower reproductive output than Controls even when both were raised under the conditions under which the Selected populations evolved. These results imply that evolutionary adaptation to juvenile undernutrition has large pleiotropic consequences for adult metabolism, and that they are costly rather than adaptive for adult fitness. Thus, juvenile and adult metabolism do not appear to evolve independently from each other even in a holometabolous species where the two life stages are separated by a complete metamorphosis.