Robust group- but limited individual-level (longitudinal) reliability and insights into cross-phases response prediction of conditioned fear

  1. Maren Klingelhöfer-Jens  Is a corresponding author
  2. Mana R Ehlers
  3. Manuel Kuhn
  4. Vincent Keyaniyan
  5. Tina B Lonsdorf
  1. University Medical Center Hamburg-Eppendorf, Germany
  2. Harvard Medical School, United States

Abstract

Here we follow the call to target measurement reliability as a key prerequisite for individual-level predictions in translational neuroscience by investigating i) longitudinal reliability at the individual and ii) group level, iii) internal consistency and iv) response predictability across experimental phases. 120 individuals performed a fear conditioning paradigm twice six months apart. Analyses of skin conductance responses, fear ratings and BOLD-fMRI with different data transformations and included numbers of trials were conducted. While longitudinal reliability was rather limited at the individual level, it was comparatively higher for acquisition but not extinction at the group-level. Internal consistency was satisfactory. Higher responding in preceding phases predicted higher responding in subsequent experimental phases at a weak to moderate level depending on data specifications. In sum, the results suggest that while individual-level predictions are meaningful for (very) short time frames, they also call for more attention to measurement properties in the field.

Data availability

The data that support the findings of this study and the R Markdown files that generate this manuscript are openly available in Zenodo at https://doi.org/10.5281/zenodo.6359920.

The following data sets were generated

Article and author information

Author details

  1. Maren Klingelhöfer-Jens

    Institute for Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
    For correspondence
    m.klingelhoefer-jens@uke.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5393-7871
  2. Mana R Ehlers

    Institute for Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1316-3787
  3. Manuel Kuhn

    Department of Psychiatry, Harvard Medical School, Belmont, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Vincent Keyaniyan

    Institute for Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Tina B Lonsdorf

    Institute for Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1501-4846

Funding

Deutsche Forschungsgemeinschaft (INST 211/633-2)

  • Manuel Kuhn

Deutsche Forschungsgemeinschaft (LO 1980/4-1)

  • Mana R Ehlers

Deutsche Forschungsgemeinschaft (LO 1980/7-1)

  • Vincent Keyaniyan

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: All participants gave written informed consent to the protocol which was approved by the local ethics committee (PV 5157, Ethics Committee of the General Medical Council Hamburg). The study was conducted in accordance with the Declaration of Helsinki.

Reviewing Editor

  1. Alexander Shackman, University of Maryland, United States

Version history

  1. Received: March 17, 2022
  2. Preprint posted: March 18, 2022 (view preprint)
  3. Accepted: September 12, 2022
  4. Accepted Manuscript published: September 13, 2022 (version 1)
  5. Accepted Manuscript updated: September 15, 2022 (version 2)
  6. Version of Record published: November 24, 2022 (version 3)

Copyright

© 2022, Klingelhöfer-Jens et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 662
    Page views
  • 139
    Downloads
  • 3
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Maren Klingelhöfer-Jens
  2. Mana R Ehlers
  3. Manuel Kuhn
  4. Vincent Keyaniyan
  5. Tina B Lonsdorf
(2022)
Robust group- but limited individual-level (longitudinal) reliability and insights into cross-phases response prediction of conditioned fear
eLife 11:e78717.
https://doi.org/10.7554/eLife.78717

Share this article

https://doi.org/10.7554/eLife.78717

Further reading

    1. Developmental Biology
    2. Neuroscience
    Athina Keramidioti, Sandra Schneid ... Charles N David
    Research Article

    The Hydra nervous system is the paradigm of a ‘simple nerve net’. Nerve cells in Hydra, as in many cnidarian polyps, are organized in a nerve net extending throughout the body column. This nerve net is required for control of spontaneous behavior: elimination of nerve cells leads to polyps that do not move and are incapable of capturing and ingesting prey (Campbell, 1976). We have re-examined the structure of the Hydra nerve net by immunostaining fixed polyps with a novel antibody that stains all nerve cells in Hydra. Confocal imaging shows that there are two distinct nerve nets, one in the ectoderm and one in the endoderm, with the unexpected absence of nerve cells in the endoderm of the tentacles. The nerve nets in the ectoderm and endoderm do not contact each other. High-resolution TEM (transmission electron microscopy) and serial block face SEM (scanning electron microscopy) show that the nerve nets consist of bundles of parallel overlapping neurites. Results from transgenic lines show that neurite bundles include different neural circuits and hence that neurites in bundles require circuit-specific recognition. Nerve cell-specific innexins indicate that gap junctions can provide this specificity. The occurrence of bundles of neurites supports a model for continuous growth and differentiation of the nerve net by lateral addition of new nerve cells to the existing net. This model was confirmed by tracking newly differentiated nerve cells.

    1. Neuroscience
    Anna-Maria Grob, Hendrik Heinbockel ... Lars Schwabe
    Research Article

    Maintaining an accurate model of the world relies on our ability to update memory representations in light of new information. Previous research on the integration of new information into memory mainly focused on the hippocampus. Here, we hypothesized that the angular gyrus, known to be involved in episodic memory and imagination, plays a pivotal role in the insight-driven reconfiguration of memory representations. To test this hypothesis, participants received continuous theta burst stimulation (cTBS) over the left angular gyrus or sham stimulation before gaining insight into the relationship between previously separate life-like animated events in a narrative-insight task. During this task, participants also underwent EEG recording and their memory for linked and non-linked events was assessed shortly thereafter. Our results show that cTBS to the angular gyrus decreased memory for the linking events and reduced the memory advantage for linked relative to non-linked events. At the neural level, cTBS targeting the angular gyrus reduced centro-temporal coupling with frontal regions and abolished insight-induced neural representational changes for events linked via imagination, indicating impaired memory reconfiguration. Further, the cTBS group showed representational changes for non-linked events that resembled the patterns observed in the sham group for the linked events, suggesting failed pruning of the narrative in memory. Together, our findings demonstrate a causal role of the left angular gyrus in insight-related memory reconfigurations.