Robust group- but limited individual-level (longitudinal) reliability and insights into cross-phases response prediction of conditioned fear

  1. Maren Klingelhöfer-Jens  Is a corresponding author
  2. Mana R Ehlers
  3. Manuel Kuhn
  4. Vincent Keyaniyan
  5. Tina B Lonsdorf
  1. University Medical Center Hamburg-Eppendorf, Germany
  2. Harvard Medical School, United States

Abstract

Here we follow the call to target measurement reliability as a key prerequisite for individual-level predictions in translational neuroscience by investigating i) longitudinal reliability at the individual and ii) group level, iii) internal consistency and iv) response predictability across experimental phases. 120 individuals performed a fear conditioning paradigm twice six months apart. Analyses of skin conductance responses, fear ratings and BOLD-fMRI with different data transformations and included numbers of trials were conducted. While longitudinal reliability was rather limited at the individual level, it was comparatively higher for acquisition but not extinction at the group-level. Internal consistency was satisfactory. Higher responding in preceding phases predicted higher responding in subsequent experimental phases at a weak to moderate level depending on data specifications. In sum, the results suggest that while individual-level predictions are meaningful for (very) short time frames, they also call for more attention to measurement properties in the field.

Data availability

The data that support the findings of this study and the R Markdown files that generate this manuscript are openly available in Zenodo at https://doi.org/10.5281/zenodo.6359920.

The following data sets were generated

Article and author information

Author details

  1. Maren Klingelhöfer-Jens

    Institute for Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
    For correspondence
    m.klingelhoefer-jens@uke.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5393-7871
  2. Mana R Ehlers

    Institute for Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1316-3787
  3. Manuel Kuhn

    Department of Psychiatry, Harvard Medical School, Belmont, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Vincent Keyaniyan

    Institute for Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Tina B Lonsdorf

    Institute for Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1501-4846

Funding

Deutsche Forschungsgemeinschaft (INST 211/633-2)

  • Manuel Kuhn

Deutsche Forschungsgemeinschaft (LO 1980/4-1)

  • Mana R Ehlers

Deutsche Forschungsgemeinschaft (LO 1980/7-1)

  • Vincent Keyaniyan

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: All participants gave written informed consent to the protocol which was approved by the local ethics committee (PV 5157, Ethics Committee of the General Medical Council Hamburg). The study was conducted in accordance with the Declaration of Helsinki.

Reviewing Editor

  1. Alexander Shackman, University of Maryland, United States

Publication history

  1. Received: March 17, 2022
  2. Preprint posted: March 18, 2022 (view preprint)
  3. Accepted: September 12, 2022
  4. Accepted Manuscript published: September 13, 2022 (version 1)
  5. Accepted Manuscript updated: September 15, 2022 (version 2)
  6. Version of Record published: November 24, 2022 (version 3)

Copyright

© 2022, Klingelhöfer-Jens et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 220
    Page views
  • 63
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Maren Klingelhöfer-Jens
  2. Mana R Ehlers
  3. Manuel Kuhn
  4. Vincent Keyaniyan
  5. Tina B Lonsdorf
(2022)
Robust group- but limited individual-level (longitudinal) reliability and insights into cross-phases response prediction of conditioned fear
eLife 11:e78717.
https://doi.org/10.7554/eLife.78717
  1. Further reading

Further reading

    1. Neuroscience
    Maria Cecilia Martinez, Camila Lidia Zold ... Mariano Andrés Belluscio
    Research Article

    The automatic initiation of actions can be highly functional. But occasionally these actions cannot be withheld and are released at inappropriate times, impulsively. Striatal activity has been shown to participate in the timing of action sequence initiation and it has been linked to impulsivity. Using a self-initiated task, we trained adult male rats to withhold a rewarded action sequence until a waiting time interval has elapsed. By analyzing neuronal activity we show that the striatal response preceding the initiation of the learned sequence is strongly modulated by the time subjects wait before eliciting the sequence. Interestingly, the modulation is steeper in adolescent rats, which show a strong prevalence of impulsive responses compared to adults. We hypothesize this anticipatory striatal activity reflects the animals’ subjective reward expectation, based on the elapsed waiting time, while the steeper waiting modulation in adolescence reflects age-related differences in temporal discounting, internal urgency states, or explore–exploit balance.

    1. Computational and Systems Biology
    2. Neuroscience
    Sergio Oscar Verduzco-Flores, Erik De Schutter
    Research Article Updated

    How dynamic interactions between nervous system regions in mammals performs online motor control remains an unsolved problem. In this paper, we show that feedback control is a simple, yet powerful way to understand the neural dynamics of sensorimotor control. We make our case using a minimal model comprising spinal cord, sensory and motor cortex, coupled by long connections that are plastic. It succeeds in learning how to perform reaching movements of a planar arm with 6 muscles in several directions from scratch. The model satisfies biological plausibility constraints, like neural implementation, transmission delays, local synaptic learning and continuous online learning. Using differential Hebbian plasticity the model can go from motor babbling to reaching arbitrary targets in less than 10 min of in silico time. Moreover, independently of the learning mechanism, properly configured feedback control has many emergent properties: neural populations in motor cortex show directional tuning and oscillatory dynamics, the spinal cord creates convergent force fields that add linearly, and movements are ataxic (as in a motor system without a cerebellum).