Robust group- but limited individual-level (longitudinal) reliability and insights into cross-phases response prediction of conditioned fear

  1. Maren Klingelhöfer-Jens  Is a corresponding author
  2. Mana R Ehlers
  3. Manuel Kuhn
  4. Vincent Keyaniyan
  5. Tina B Lonsdorf
  1. University Medical Center Hamburg-Eppendorf, Germany
  2. Harvard Medical School, United States

Abstract

Here we follow the call to target measurement reliability as a key prerequisite for individual-level predictions in translational neuroscience by investigating i) longitudinal reliability at the individual and ii) group level, iii) internal consistency and iv) response predictability across experimental phases. 120 individuals performed a fear conditioning paradigm twice six months apart. Analyses of skin conductance responses, fear ratings and BOLD-fMRI with different data transformations and included numbers of trials were conducted. While longitudinal reliability was rather limited at the individual level, it was comparatively higher for acquisition but not extinction at the group-level. Internal consistency was satisfactory. Higher responding in preceding phases predicted higher responding in subsequent experimental phases at a weak to moderate level depending on data specifications. In sum, the results suggest that while individual-level predictions are meaningful for (very) short time frames, they also call for more attention to measurement properties in the field.

Data availability

The data that support the findings of this study and the R Markdown files that generate this manuscript are openly available in Zenodo at https://doi.org/10.5281/zenodo.6359920.

The following data sets were generated

Article and author information

Author details

  1. Maren Klingelhöfer-Jens

    Institute for Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
    For correspondence
    m.klingelhoefer-jens@uke.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5393-7871
  2. Mana R Ehlers

    Institute for Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1316-3787
  3. Manuel Kuhn

    Department of Psychiatry, Harvard Medical School, Belmont, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Vincent Keyaniyan

    Institute for Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Tina B Lonsdorf

    Institute for Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1501-4846

Funding

Deutsche Forschungsgemeinschaft (INST 211/633-2)

  • Tina B Lonsdorf

Deutsche Forschungsgemeinschaft (LO 1980/4-1)

  • Tina B Lonsdorf

Deutsche Forschungsgemeinschaft (LO 1980/7-1)

  • Tina B Lonsdorf

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: All participants gave written informed consent to the protocol which was approved by the local ethics committee (PV 5157, Ethics Committee of the General Medical Council Hamburg). The study was conducted in accordance with the Declaration of Helsinki.

Reviewing Editor

  1. Alexander Shackman, University of Maryland, United States

Version history

  1. Received: March 17, 2022
  2. Preprint posted: March 18, 2022 (view preprint)
  3. Accepted: September 12, 2022
  4. Accepted Manuscript published: September 13, 2022 (version 1)
  5. Accepted Manuscript updated: September 15, 2022 (version 2)
  6. Version of Record published: November 24, 2022 (version 3)

Copyright

© 2022, Klingelhöfer-Jens et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 661
    Page views
  • 139
    Downloads
  • 3
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Maren Klingelhöfer-Jens
  2. Mana R Ehlers
  3. Manuel Kuhn
  4. Vincent Keyaniyan
  5. Tina B Lonsdorf
(2022)
Robust group- but limited individual-level (longitudinal) reliability and insights into cross-phases response prediction of conditioned fear
eLife 11:e78717.
https://doi.org/10.7554/eLife.78717

Share this article

https://doi.org/10.7554/eLife.78717

Further reading

    1. Neuroscience
    Peibo Xu, Jian Peng ... Yuejun Chen
    Research Article

    Deciphering patterns of connectivity between neurons in the brain is a critical step toward understanding brain function. Imaging-based neuroanatomical tracing identifies area-to-area or sparse neuron-to-neuron connectivity patterns, but with limited throughput. Barcode-based connectomics maps large numbers of single-neuron projections, but remains a challenge for jointly analyzing single-cell transcriptomics. Here, we established a rAAV2-retro barcode-based multiplexed tracing method that simultaneously characterizes the projectome and transcriptome at the single neuron level. We uncovered dedicated and collateral projection patterns of ventromedial prefrontal cortex (vmPFC) neurons to five downstream targets and found that projection-defined vmPFC neurons are molecularly heterogeneous. We identified transcriptional signatures of projection-specific vmPFC neurons, and verified Pou3f1 as a marker gene enriched in neurons projecting to the lateral hypothalamus, denoting a distinct subset with collateral projections to both dorsomedial striatum and lateral hypothalamus. In summary, we have developed a new multiplexed technique whose paired connectome and gene expression data can help reveal organizational principles that form neural circuits and process information.

    1. Neuroscience
    Maureen van der Grinten, Jaap de Ruyter van Steveninck ... Yağmur Güçlütürk
    Tools and Resources

    Blindness affects millions of people around the world. A promising solution to restoring a form of vision for some individuals are cortical visual prostheses, which bypass part of the impaired visual pathway by converting camera input to electrical stimulation of the visual system. The artificially induced visual percept (a pattern of localized light flashes, or ‘phosphenes’) has limited resolution, and a great portion of the field’s research is devoted to optimizing the efficacy, efficiency, and practical usefulness of the encoding of visual information. A commonly exploited method is non-invasive functional evaluation in sighted subjects or with computational models by using simulated prosthetic vision (SPV) pipelines. An important challenge in this approach is to balance enhanced perceptual realism, biologically plausibility, and real-time performance in the simulation of cortical prosthetic vision. We present a biologically plausible, PyTorch-based phosphene simulator that can run in real-time and uses differentiable operations to allow for gradient-based computational optimization of phosphene encoding models. The simulator integrates a wide range of clinical results with neurophysiological evidence in humans and non-human primates. The pipeline includes a model of the retinotopic organization and cortical magnification of the visual cortex. Moreover, the quantitative effects of stimulation parameters and temporal dynamics on phosphene characteristics are incorporated. Our results demonstrate the simulator’s suitability for both computational applications such as end-to-end deep learning-based prosthetic vision optimization as well as behavioral experiments. The modular and open-source software provides a flexible simulation framework for computational, clinical, and behavioral neuroscientists working on visual neuroprosthetics.