Live-cell imaging in human colonic monolayers reveals ERK waves limit the stem cell compartment to maintain epithelial homeostasis

Abstract

The establishment and maintenance of different cellular compartments in tissues is a universal requirement across all metazoans. Maintaining the correct ratio of cell types in time and space allows tissues to form patterned compartments and perform complex functions. Patterning is especially evident in the human colon, where tissue homeostasis is maintained by stem cells in crypt structures that balance proliferation and differentiation. Here, we developed a human 2D patient derived organoid (PDO) screening platform to study tissue patterning and kinase pathway dynamics in single cells. Using this system, we discovered that waves of ERK signaling induced by apoptotic cells play a critical role in maintaining tissue patterning and homeostasis. If ERK is activated acutely across all cells instead of in wavelike patterns, then tissue patterning and stem cells are lost. Conversely, if ERK activity is inhibited, then stem cells become unrestricted and expand dramatically. This work demonstrates that the colonic epithelium requires coordinated ERK signaling dynamics to maintain patterning and tissue homeostasis. Our work reveals how ERK can antagonize stem cells while supporting cell replacement and the function of the gut.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting file; Source Data files have been provided for all main figures

Article and author information

Author details

  1. Kelvin W Pond

    Department of Cellular and Molecular Medicine, University of Arizona, Tucson, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Julia M Morris

    Department of Cellular and Molecular Medicine, University of Arizona, Tucson, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Olga Alkhimenok

    Department of Molecular and Cellular Biology, University of Arizona, Tucson, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Reeba P Varghese

    Department of Cellular and Molecular Medicine, University of Arizona, Tucson, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Carly C Cabel

    Department of Cellular and Molecular Medicine, University of Arizona, Tucson, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Nathan A Ellis

    Department of Cellular and Molecular Medicine, University of Arizona, Tucson, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Jayati Chakrabarti

    Department of Cellular and Molecular Medicine, University of Arizona, Tucson, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Yana Zavros

    Department of Cellular and Molecular Medicine, University of Arizona, Tucson, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Juanita L Merchant

    Department of Cellular and Molecular Medicine, University of Arizona, Tucson, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Curtis A Thorne

    Department of Cellular and Molecular Medicine, University of Arizona, Tucson, United States
    For correspondence
    curtisthorne@arizona.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8711-8292
  11. Andrew L Paek

    Department of Molecular and Cellular Biology, University of Arizona, Tucson, United States
    For correspondence
    apaek@email.arizona.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2835-8544

Funding

National Institutes of Health (GM130864)

  • Andrew L Paek

National Institutes of Health (GM147128)

  • Curtis A Thorne

National Institutes of Health (CA242914)

  • Nathan A Ellis

National Institutes of Health (DK118563)

  • Juanita L Merchant

Wellcome Trust (WT223952/Z/21/Z)

  • Kelvin W Pond

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Ophir D Klein, University of California, San Francisco, United States

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#2021-0772) of the University of Arizona.

Human subjects: All primary colonic organoid cell lines to be used in this study have been anonymized by the Tissue Acquisition and Cellular/Molecular Analysis Shared Resource (TACMASR) at the University of Arizona Cancer Center. TACMASR is an on-campus biorepository to procure, store and retrieve biospecimens in a form that is deidentified and protects the privacy of the donors and confidentiality of the data collected. The individuals from whom the cells originated were resection patients at Banner University Medical Center. All researchparticipants in this proposal receive the cells with de-identified and anonymous labels that cannot trace back to the individual or their families from which they came. Thus, no one involved in this study can access the subject's identities. Therefore, the study is exempt from being considered human subject research.

Version history

  1. Preprint posted: February 23, 2022 (view preprint)
  2. Received: March 23, 2022
  3. Accepted: September 11, 2022
  4. Accepted Manuscript published: September 12, 2022 (version 1)
  5. Version of Record published: September 22, 2022 (version 2)

Copyright

© 2022, Pond et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,169
    views
  • 596
    downloads
  • 17
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kelvin W Pond
  2. Julia M Morris
  3. Olga Alkhimenok
  4. Reeba P Varghese
  5. Carly C Cabel
  6. Nathan A Ellis
  7. Jayati Chakrabarti
  8. Yana Zavros
  9. Juanita L Merchant
  10. Curtis A Thorne
  11. Andrew L Paek
(2022)
Live-cell imaging in human colonic monolayers reveals ERK waves limit the stem cell compartment to maintain epithelial homeostasis
eLife 11:e78837.
https://doi.org/10.7554/eLife.78837

Share this article

https://doi.org/10.7554/eLife.78837

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Christopher TA Lewis, Elise G Melhedegaard ... Julien Ochala
    Research Article

    Hibernation is a period of metabolic suppression utilized by many small and large mammal species to survive during winter periods. As the underlying cellular and molecular mechanisms remain incompletely understood, our study aimed to determine whether skeletal muscle myosin and its metabolic efficiency undergo alterations during hibernation to optimize energy utilization. We isolated muscle fibers from small hibernators, Ictidomys tridecemlineatus and Eliomys quercinus and larger hibernators, Ursus arctos and Ursus americanus. We then conducted loaded Mant-ATP chase experiments alongside X-ray diffraction to measure resting myosin dynamics and its ATP demand. In parallel, we performed multiple proteomics analyses. Our results showed a preservation of myosin structure in U. arctos and U. americanus during hibernation, whilst in I. tridecemlineatus and E. quercinus, changes in myosin metabolic states during torpor unexpectedly led to higher levels in energy expenditure of type II, fast-twitch muscle fibers at ambient lab temperatures (20 °C). Upon repeating loaded Mant-ATP chase experiments at 8 °C (near the body temperature of torpid animals), we found that myosin ATP consumption in type II muscle fibers was reduced by 77–107% during torpor compared to active periods. Additionally, we observed Myh2 hyper-phosphorylation during torpor in I. tridecemilineatus, which was predicted to stabilize the myosin molecule. This may act as a potential molecular mechanism mitigating myosin-associated increases in skeletal muscle energy expenditure during periods of torpor in response to cold exposure. Altogether, we demonstrate that resting myosin is altered in hibernating mammals, contributing to significant changes to the ATP consumption of skeletal muscle. Additionally, we observe that it is further altered in response to cold exposure and highlight myosin as a potentially contributor to skeletal muscle non-shivering thermogenesis.

    1. Cell Biology
    Jun Yang, Shitian Zou ... Xiaochun Bai
    Research Article

    Quiescence (G0) maintenance and exit are crucial for tissue homeostasis and regeneration in mammals. Here, we show that methyl-CpG binding protein 2 (Mecp2) expression is cell cycle-dependent and negatively regulates quiescence exit in cultured cells and in an injury-induced liver regeneration mouse model. Specifically, acute reduction of Mecp2 is required for efficient quiescence exit as deletion of Mecp2 accelerates, while overexpression of Mecp2 delays quiescence exit, and forced expression of Mecp2 after Mecp2 conditional knockout rescues cell cycle reentry. The E3 ligase Nedd4 mediates the ubiquitination and degradation of Mecp2, and thus facilitates quiescence exit. A genome-wide study uncovered the dual role of Mecp2 in preventing quiescence exit by transcriptionally activating metabolic genes while repressing proliferation-associated genes. Particularly disruption of two nuclear receptors, Rara or Nr1h3, accelerates quiescence exit, mimicking the Mecp2 depletion phenotype. Our studies unravel a previously unrecognized role for Mecp2 as an essential regulator of quiescence exit and tissue regeneration.