Live-cell imaging in human colonic monolayers reveals ERK waves limit the stem cell compartment to maintain epithelial homeostasis

Abstract

The establishment and maintenance of different cellular compartments in tissues is a universal requirement across all metazoans. Maintaining the correct ratio of cell types in time and space allows tissues to form patterned compartments and perform complex functions. Patterning is especially evident in the human colon, where tissue homeostasis is maintained by stem cells in crypt structures that balance proliferation and differentiation. Here, we developed a human 2D patient derived organoid (PDO) screening platform to study tissue patterning and kinase pathway dynamics in single cells. Using this system, we discovered that waves of ERK signaling induced by apoptotic cells play a critical role in maintaining tissue patterning and homeostasis. If ERK is activated acutely across all cells instead of in wavelike patterns, then tissue patterning and stem cells are lost. Conversely, if ERK activity is inhibited, then stem cells become unrestricted and expand dramatically. This work demonstrates that the colonic epithelium requires coordinated ERK signaling dynamics to maintain patterning and tissue homeostasis. Our work reveals how ERK can antagonize stem cells while supporting cell replacement and the function of the gut.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting file; Source Data files have been provided for all main figures

Article and author information

Author details

  1. Kelvin W Pond

    Department of Cellular and Molecular Medicine, University of Arizona, Tucson, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Julia M Morris

    Department of Cellular and Molecular Medicine, University of Arizona, Tucson, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Olga Alkhimenok

    Department of Molecular and Cellular Biology, University of Arizona, Tucson, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Reeba P Varghese

    Department of Cellular and Molecular Medicine, University of Arizona, Tucson, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Carly C Cabel

    Department of Cellular and Molecular Medicine, University of Arizona, Tucson, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Nathan A Ellis

    Department of Cellular and Molecular Medicine, University of Arizona, Tucson, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Jayati Chakrabarti

    Department of Cellular and Molecular Medicine, University of Arizona, Tucson, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Yana Zavros

    Department of Cellular and Molecular Medicine, University of Arizona, Tucson, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Juanita L Merchant

    Department of Cellular and Molecular Medicine, University of Arizona, Tucson, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Curtis A Thorne

    Department of Cellular and Molecular Medicine, University of Arizona, Tucson, United States
    For correspondence
    curtisthorne@arizona.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8711-8292
  11. Andrew L Paek

    Department of Molecular and Cellular Biology, University of Arizona, Tucson, United States
    For correspondence
    apaek@email.arizona.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2835-8544

Funding

National Institutes of Health (GM130864)

  • Andrew L Paek

National Institutes of Health (GM147128)

  • Curtis A Thorne

National Institutes of Health (CA242914)

  • Nathan A Ellis

National Institutes of Health (DK118563)

  • Juanita L Merchant

Wellcome Trust (WT223952/Z/21/Z)

  • Kelvin W Pond

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#2021-0772) of the University of Arizona.

Human subjects: All primary colonic organoid cell lines to be used in this study have been anonymized by the Tissue Acquisition and Cellular/Molecular Analysis Shared Resource (TACMASR) at the University of Arizona Cancer Center. TACMASR is an on-campus biorepository to procure, store and retrieve biospecimens in a form that is deidentified and protects the privacy of the donors and confidentiality of the data collected. The individuals from whom the cells originated were resection patients at Banner University Medical Center. All researchparticipants in this proposal receive the cells with de-identified and anonymous labels that cannot trace back to the individual or their families from which they came. Thus, no one involved in this study can access the subject's identities. Therefore, the study is exempt from being considered human subject research.

Reviewing Editor

  1. Ophir D Klein, University of California, San Francisco, United States

Version history

  1. Preprint posted: February 23, 2022 (view preprint)
  2. Received: March 23, 2022
  3. Accepted: September 11, 2022
  4. Accepted Manuscript published: September 12, 2022 (version 1)
  5. Version of Record published: September 22, 2022 (version 2)

Copyright

© 2022, Pond et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,973
    Page views
  • 589
    Downloads
  • 9
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kelvin W Pond
  2. Julia M Morris
  3. Olga Alkhimenok
  4. Reeba P Varghese
  5. Carly C Cabel
  6. Nathan A Ellis
  7. Jayati Chakrabarti
  8. Yana Zavros
  9. Juanita L Merchant
  10. Curtis A Thorne
  11. Andrew L Paek
(2022)
Live-cell imaging in human colonic monolayers reveals ERK waves limit the stem cell compartment to maintain epithelial homeostasis
eLife 11:e78837.
https://doi.org/10.7554/eLife.78837

Share this article

https://doi.org/10.7554/eLife.78837

Further reading

    1. Cell Biology
    2. Plant Biology
    Maciek Adamowski, Ivana Matijević, Jiří Friml
    Research Article

    The GNOM (GN) Guanine nucleotide Exchange Factor for ARF small GTPases (ARF-GEF) is among the best studied trafficking regulators in plants, playing crucial and unique developmental roles in patterning and polarity. The current models place GN at the Golgi apparatus (GA), where it mediates secretion/recycling, and at the plasma membrane (PM) presumably contributing to clathrin-mediated endocytosis (CME). The mechanistic basis of the developmental function of GN, distinct from the other ARF-GEFs including its closest homologue GNOM-LIKE1 (GNL1), remains elusive. Insights from this study largely extend the current notions of GN function. We show that GN, but not GNL1, localizes to the cell periphery at long-lived structures distinct from clathrin-coated pits, while CME and secretion proceed normally in gn knockouts. The functional GN mutant variant GNfewerroots, absent from the GA, suggests that the cell periphery is the major site of GN action responsible for its developmental function. Following inhibition by Brefeldin A, GN, but not GNL1, relocates to the PM likely on exocytic vesicles, suggesting selective molecular associations en route to the cell periphery. A study of GN-GNL1 chimeric ARF-GEFs indicates that all GN domains contribute to the specific GN function in a partially redundant manner. Together, this study offers significant steps toward the elucidation of the mechanism underlying unique cellular and development functions of GNOM.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Chenjie Xia, Huihui Xu ... Hongting Jin
    Research Article

    Glucocorticoid-induced osteonecrosis of the femoral head (GONFH) is a common refractory joint disease characterized by bone damage and the collapse of femoral head structure. However, the exact pathological mechanisms of GONFH remain unknown. Here, we observed abnormal osteogenesis and adipogenesis associated with decreased β-catenin in the necrotic femoral head of GONFH patients. In vivo and in vitro studies further revealed that glucocorticoid exposure disrupted osteogenic/adipogenic differentiation of bone marrow mesenchymal cells (BMSCs) by inhibiting β-catenin signaling in glucocorticoid-induced GONFH rats. Col2+ lineage largely contributes to BMSCs and was found an osteogenic commitment in the femoral head through 9 mo of lineage trace. Specific deletion of β-catenin gene (Ctnnb1) in Col2+ cells shifted their commitment from osteoblasts to adipocytes, leading to a full spectrum of disease phenotype of GONFH in adult mice. Overall, we uncover that β-catenin inhibition disrupting the homeostasis of osteogenic/adipogenic differentiation contributes to the development of GONFH and identify an ideal genetic-modified mouse model of GONFH.