Abstract

Histone post-translational modifications (PTMs) play a critical role in chromatin regulation. It has been proposed that these PTMs form localized 'codes' that are read by specialized regions (reader domains) in chromatin associated proteins (CAPs) to regulate downstream function. Substantial effort has been made to define [CAP : histone PTM] specificities, and thus decipher the histone code and guide epigenetic therapies. However, this has largely been done using the reductive approach of isolated reader domains and histone peptides, which cannot account for any higher order factors. Here we show that the [BPTF PHD finger and bromodomain : histone PTM] interaction is dependent on nucleosome context. The tandem reader selectively associates with nucleosomal H3K4me3 and H3K14ac or H3K18ac, a combinatorial engagement that despite being in cis is not predicted by peptides. This in vitro specificity of the BPTF tandem reader for PTM-defined nucleosomes is recapitulated in a cellular context. We propose that regulatable histone tail accessibility and its impact on the binding potential of reader domains necessitates we refine the 'histone code' concept and interrogate it at the nucleosome level.

Data availability

Raw data from dCypher assays is in Supplementary File 1. All sequencing data has been deposited in the NCBU Gene Expression Omnibus (GEO) with accession number GSE150617.

The following data sets were generated

Article and author information

Author details

  1. Matthew R Marunde

    EpiCypher, Durham, United States
    Competing interests
    Matthew R Marunde, MRM is affiliated with EpiCypher Inc. The author has no financial interests to declare..
  2. Harrison A Fuchs

    Department of Biochemistry, University of Colorado Anschutz Medical Campus, Aurora, United States
    Competing interests
    No competing interests declared.
  3. Jonathan M Burg

    EpiCypher, Durham, United States
    Competing interests
    Jonathan M Burg, JB is affiliated with EpiCypher Inc. The author has no financial interests to declare..
  4. Irina K Popova

    EpiCypher, Durham, United States
    Competing interests
    Irina K Popova, IKP is affiliated with EpiCypher Inc. The author has no financial interests to declare..
  5. Anup Vaidya

    EpiCypher, Durham, United States
    Competing interests
    Anup Vaidya, AV is affiliated with EpiCypher Inc. The author has no financial interests to declare..
  6. Nathan W Hall

    EpiCypher, Durham, United States
    Competing interests
    Nathan W Hall, NWH is affiliated with EpiCypher Inc. The author has no financial interests to declare..
  7. Ellen N Weinzapfel

    EpiCypher, Durham, United States
    Competing interests
    Ellen N Weinzapfel, ENW is affiliated with EpiCypher Inc. The author has no financial interests to declare..
  8. Matthew J Meiners

    EpiCypher, Durham, United States
    Competing interests
    Matthew J Meiners, MJM is affiliated with EpiCypher Inc. The author has no financial interests to declare..
  9. Rachel Watson

    EpiCypher, Durham, United States
    Competing interests
    Rachel Watson, RW is affiliated with EpiCypher Inc. The author has no financial interests to declare..
  10. Zachary B Gillespie

    EpiCypher, Durham, United States
    Competing interests
    Zachary B Gillespie, ZBG is affiliated with EpiCypher Inc. The author has no financial interests to declare..
  11. Hailey F Taylor

    EpiCypher, Durham, United States
    Competing interests
    Hailey F Taylor, HFT is affiliated with EpiCypher Inc. The author has no financial interests to declare..
  12. Laylo Mukhsinova

    EpiCypher, Durham, United States
    Competing interests
    Laylo Mukhsinova, LM is affiliated with EpiCypher Inc. The author has no financial interests to declare..
  13. Ugochi C Onuoha

    EpiCypher, Durham, United States
    Competing interests
    Ugochi C Onuoha, UCO is affiliated with EpiCypher Inc. The author has no financial interests to declare..
  14. Sarah A Howard

    EpiCypher, Durham, United States
    Competing interests
    Sarah A Howard, SAH is affiliated with EpiCypher Inc. The author has no financial interests to declare..
  15. Katherine Novitzky

    EpiCypher, Durham, United States
    Competing interests
    Katherine Novitzky, KN is affiliated with EpiCypher Inc. The author has no financial interests to declare..
  16. Eileen T McAnarney

    EpiCypher, Durham, United States
    Competing interests
    Eileen T McAnarney, ETM is affiliated with EpiCypher Inc. The author has no financial interests to declare..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2337-2889
  17. Krzysztof Krajewski

    Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, United States
    Competing interests
    Krzysztof Krajewski, KK is affiliated with EpiCypher Inc. The author has no financial interests to declare..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7159-617X
  18. Martis W Cowles

    EpiCypher, Durham, United States
    Competing interests
    Martis W Cowles, MWC is affiliated with EpiCypher Inc. The author has no financial interests to declare..
  19. Marcus A Cheek

    EpiCypher, Durham, United States
    Competing interests
    Marcus A Cheek, MAC is affiliated with EpiCypher Inc. The author has no financial interests to declare..
  20. Zu-Wen Sun

    EpiCypher, Durham, United States
    Competing interests
    Zu-Wen Sun, ZS is affiliated with EpiCypher Inc. The author has no financial interests to declare..
  21. Bryan J Venters

    EpiCypher, Durham, United States
    Competing interests
    Bryan J Venters, BJV is affiliated with EpiCypher Inc. The author has no financial interests to declare..
  22. Michael-C Keogh

    EpiCypher, Durham, United States
    For correspondence
    mkeogh@epicypher.com
    Competing interests
    Michael-C Keogh, MCK is a board member of EpiCypher Inc. The author has no financial interests to declare..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2219-8623
  23. Catherine A Musselman

    Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, United States
    For correspondence
    catherine.musselman@cuanschutz.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8356-7971

Funding

National Institutes of Health (2T32GM008365-26A1)

  • Harrison A Fuchs

National Institutes of Health (P30CA086862)

  • Catherine A Musselman

National Science Foundation (CAREER-1452411)

  • Harrison A Fuchs

National Institutes of Health (R35GM128705)

  • Harrison A Fuchs
  • Catherine A Musselman

National Institutes of Health (R43CA236474)

  • Matthew R Marunde
  • Jonathan M Burg
  • Irina K Popova
  • Anup Vaidya
  • Nathan W Hall
  • Ellen N Weinzapfel
  • Matthew J Meiners
  • Rachel Watson
  • Zachary B Gillespie
  • Hailey F Taylor
  • Laylo Mukhsinova
  • Ugochi C Onuoha
  • Sarah A Howard
  • Katherine Novitzky
  • Eileen T McAnarney
  • Krzysztof Krajewski
  • Martis W Cowles
  • Marcus A Cheek
  • Zu-Wen Sun
  • Bryan J Venters
  • Michael-C Keogh

National Institutes of Health (R44GM117683)

  • Matthew R Marunde
  • Jonathan M Burg
  • Irina K Popova
  • Anup Vaidya
  • Nathan W Hall
  • Ellen N Weinzapfel
  • Matthew J Meiners
  • Rachel Watson
  • Zachary B Gillespie
  • Hailey F Taylor
  • Laylo Mukhsinova
  • Ugochi C Onuoha
  • Sarah A Howard
  • Katherine Novitzky
  • Eileen T McAnarney
  • Krzysztof Krajewski
  • Martis W Cowles
  • Marcus A Cheek
  • Zu-Wen Sun
  • Bryan J Venters
  • Michael-C Keogh

National Institutes of Health (R44CA214076)

  • Matthew R Marunde
  • Jonathan M Burg
  • Irina K Popova
  • Anup Vaidya
  • Nathan W Hall
  • Ellen N Weinzapfel
  • Matthew J Meiners
  • Rachel Watson
  • Zachary B Gillespie
  • Hailey F Taylor
  • Laylo Mukhsinova
  • Ugochi C Onuoha
  • Sarah A Howard
  • Katherine Novitzky
  • Eileen T McAnarney
  • Krzysztof Krajewski
  • Martis W Cowles
  • Marcus A Cheek
  • Zu-Wen Sun
  • Bryan J Venters
  • Michael-C Keogh

National Institutes of Health (R44GM116584)

  • Matthew R Marunde
  • Jonathan M Burg
  • Irina K Popova
  • Anup Vaidya
  • Nathan W Hall
  • Ellen N Weinzapfel
  • Matthew J Meiners
  • Rachel Watson
  • Zachary B Gillespie
  • Hailey F Taylor
  • Laylo Mukhsinova
  • Ugochi C Onuoha
  • Sarah A Howard
  • Katherine Novitzky
  • Eileen T McAnarney
  • Krzysztof Krajewski
  • Martis W Cowles
  • Marcus A Cheek
  • Zu-Wen Sun
  • Bryan J Venters
  • Michael-C Keogh

National Institutes of Health (R44DE029633)

  • Matthew R Marunde
  • Jonathan M Burg
  • Irina K Popova
  • Anup Vaidya
  • Nathan W Hall
  • Ellen N Weinzapfel
  • Matthew J Meiners
  • Rachel Watson
  • Zachary B Gillespie
  • Hailey F Taylor
  • Laylo Mukhsinova
  • Ugochi C Onuoha
  • Sarah A Howard
  • Katherine Novitzky
  • Eileen T McAnarney
  • Krzysztof Krajewski
  • Martis W Cowles
  • Marcus A Cheek
  • Zu-Wen Sun
  • Bryan J Venters
  • Michael-C Keogh

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2024, Marunde et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,929
    views
  • 351
    downloads
  • 14
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Matthew R Marunde
  2. Harrison A Fuchs
  3. Jonathan M Burg
  4. Irina K Popova
  5. Anup Vaidya
  6. Nathan W Hall
  7. Ellen N Weinzapfel
  8. Matthew J Meiners
  9. Rachel Watson
  10. Zachary B Gillespie
  11. Hailey F Taylor
  12. Laylo Mukhsinova
  13. Ugochi C Onuoha
  14. Sarah A Howard
  15. Katherine Novitzky
  16. Eileen T McAnarney
  17. Krzysztof Krajewski
  18. Martis W Cowles
  19. Marcus A Cheek
  20. Zu-Wen Sun
  21. Bryan J Venters
  22. Michael-C Keogh
  23. Catherine A Musselman
(2024)
Nucleosome conformation dictates the histone code
eLife 13:e78866.
https://doi.org/10.7554/eLife.78866

Share this article

https://doi.org/10.7554/eLife.78866

Further reading

    1. Cancer Biology
    2. Chromosomes and Gene Expression
    Ashley L Cook, Surojit Sur ... Nicolas Wyhs
    Research Article

    Despite exciting developments in cancer immunotherapy, its broad application is limited by the paucity of targetable antigens on the tumor cell surface. As an intrinsic cellular pathway, nonsense-mediated decay (NMD) conceals neoantigens through the destruction of the RNA products from genes harboring truncating mutations. We developed and conducted a high-throughput screen, based on the ratiometric analysis of transcripts, to identify critical mediators of NMD in human cells. This screen implicated disruption of kinase SMG1’s phosphorylation of UPF1 as a potential disruptor of NMD. This led us to design a novel SMG1 inhibitor, KVS0001, that elevates the expression of transcripts and proteins resulting from human and murine truncating mutations in vitro and murine cells in vivo. Most importantly, KVS0001 concomitantly increased the presentation of immune-targetable human leukocyte antigens (HLA) class I-associated peptides from NMD-downregulated proteins on the surface of human cancer cells. KVS0001 provides new opportunities for studying NMD and the diseases in which NMD plays a role, including cancer and inherited diseases.

    1. Biochemistry and Chemical Biology
    2. Chromosomes and Gene Expression
    Kira A Cozzolino, Lynn Sanford ... Dylan J Taatjes
    Research Article

    Hyperactive interferon (IFN) signaling is a hallmark of Down syndrome (DS), a condition caused by Trisomy 21 (T21); strategies that normalize IFN signaling could benefit this population. Mediator-associated kinases CDK8 and CDK19 drive inflammatory responses through incompletely understood mechanisms. Using sibling-matched cell lines with/without T21, we investigated Mediator kinase function in the context of hyperactive IFN in DS over a 75 min to 24 hr timeframe. Activation of IFN-response genes was suppressed in cells treated with the CDK8/CDK19 inhibitor cortistatin A (CA), via rapid suppression of IFN-responsive transcription factor (TF) activity. We also discovered that CDK8/CDK19 affect splicing, a novel means by which Mediator kinases control gene expression. To further probe Mediator kinase function, we completed cytokine screens and metabolomics experiments. Cytokines are master regulators of inflammatory responses; by screening 105 different cytokine proteins, we show that Mediator kinases help drive IFN-dependent cytokine responses at least in part through transcriptional regulation of cytokine genes and receptors. Metabolomics revealed that Mediator kinase inhibition altered core metabolic pathways in cell type-specific ways, and broad upregulation of anti-inflammatory lipid mediators occurred specifically in kinase-inhibited cells during hyperactive IFNγ signaling. A subset of these lipids (e.g. oleamide, desmosterol) serve as ligands for nuclear receptors PPAR and LXR, and activation of these receptors occurred specifically during hyperactive IFN signaling in CA-treated cells, revealing mechanistic links between Mediator kinases, lipid metabolism, and nuclear receptor function. Collectively, our results establish CDK8/CDK19 as context-specific metabolic regulators, and reveal that these kinases control gene expression not only via TFs, but also through metabolic changes and splicing. Moreover, we establish that Mediator kinase inhibition antagonizes IFN signaling through transcriptional, metabolic, and cytokine responses, with implications for DS and other chronic inflammatory conditions.