Abstract

There are no pharmacological disease-modifying treatments that have an enduring effect to mitigate the seizures and comorbidities associated with established chronic temporal lobe epilepsy (TLE). Sodium selenate has been reported to have anti-epileptogenic effects if given before TLE onset. However, the majority of TLE patients already have established epilepsy when they present to the clinic. This study aimed to evaluate for disease modifying effects of sodium selenate treatment in the chronically epileptic rat post-status epilepticus (SE) model of drug-resistant TLE. Wistar rats underwent kainic acid-induced SE or sham. Ten-weeks post-SE, rats were randomly assigned to receive either sodium selenate, levetiracetam, or vehicle subcutaneous infusions continuously for 4 weeks. To evaluate the effects of the treatments, one week of continuous video-EEG was acquired before, during, and 4, 8 weeks post-treatment, followed by behavioral tests. Targeted and untargeted proteomics and metabolomics were performed on post-mortem brain tissue to identify potential pathways associated with modified disease outcomes. Telomere length has emerged as a potential biomarker of chronic brain conditions, was investigated as a novel surrogate marker of epilepsy disease severity in our current study. The results showed that sodium selenate treatment was associated with mitigation of measures of disease severity at 8 weeks post-treatment cessation; reducing the number of spontaneous seizures (p< 0.05), cognitive dysfunction (p< 0.05 in both novel object placement and recognition tasks), and sensorimotor deficits (p< 0.01). Moreover, in the brain post-mortem selenate treatment was associated with increased protein phosphatase 2A (PP2A) expression, reduced hyperphosphorylated tau, and reversed telomere length shortening (p< 0.05). Network medicine integration of multi-omics/ pre-clinical outcomes identified protein-metabolite modules positively correlated with the TLE phenotype. Our results provide evidence that treatment with sodium selenate results in a sustained disease-modifying effect in chronically epileptic rats in the post-KA SE model of TLE, including improved comorbid learning and memory deficits.

Data availability

All the metrodology and results form this work have been included in the manuscrit or as part of the supplementary material.Data has been deposited in Dryad https://doi.org/10.5061/dryad.37pvmcvnd

The following data sets were generated
    1. Casillas-Espinosa PM
    (2022) EEG and multi-omics data
    Dryad Digital Repository, doi:10.5061/dryad.37pvmcvnd.

Article and author information

Author details

  1. Pablo Miguel Casillas-Espinosa

    Department of Neuroscience, Monash University, Melbourne, Australia
    For correspondence
    pablo.casillas-espinosa@monash.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6199-9415
  2. Alison Anderson

    Department of Neuroscience, Monash University, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  3. Anna Harutyunyan

    Department of Neuroscience, Monash University, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  4. Crystal Li

    Department of Neuroscience, Monash University, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  5. Jiyoon Lee

    Department of Medicine, University of Melbourne, Parkville, Australia
    Competing interests
    The authors declare that no competing interests exist.
  6. Emma L Braine

    Department of Neuroscience, Monash University, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  7. Rhys D Brady

    Department of Neuroscience, Monash University, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  8. Mujun Sun

    Department of Neuroscience, Monash University, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  9. Cheng Huang

    Monash Proteomics and Metabolomics Facility, Monash University, Clayton, Australia
    Competing interests
    The authors declare that no competing interests exist.
  10. Christopher K Barlow

    Monash Proteomics and Metabolomics Facility, Monash University, Clayton, Australia
    Competing interests
    The authors declare that no competing interests exist.
  11. Anup D Shah

    Monash Proteomics and Metabolomics Facility, Monash University, Clayton, Australia
    Competing interests
    The authors declare that no competing interests exist.
  12. Ralf B Schittenhelm

    Monash Proteomics and Metabolomics Facility, Monash University, Clayton, Australia
    Competing interests
    The authors declare that no competing interests exist.
  13. Richelle Mychasiuk

    Department of Neuroscience, Monash University, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  14. Nigel C Jones

    Department of Neuroscience, Monash University, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  15. Sandy R Shultz

    Department of Medicine, University of Melbourne, Parkville, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2525-8775
  16. Terence J O’Brien

    Department of Medicine, University of Melbourne, Parkville, Australia
    For correspondence
    Terence.OBrien@monash.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7198-8621

Funding

National Health and Medical Research Council (APP1087172)

  • Pablo Miguel Casillas-Espinosa

University of Melbourne (603834)

  • Pablo Miguel Casillas-Espinosa

CIHR Skin Research Training Centre (PTJ - 153051)

  • Richelle Mychasiuk

National Health and Medical Research Council (Level 2 CDF)

  • Sandy R Shultz

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures were approved by the Florey Animal Ethics Committee (ethics number 16-042-UM), adhered to the Australian code for the care and use of animals for scientific purposes and consistent with ARRIVE 2.0 guidelines

Copyright

© 2023, Casillas-Espinosa et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,047
    views
  • 254
    downloads
  • 14
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Pablo Miguel Casillas-Espinosa
  2. Alison Anderson
  3. Anna Harutyunyan
  4. Crystal Li
  5. Jiyoon Lee
  6. Emma L Braine
  7. Rhys D Brady
  8. Mujun Sun
  9. Cheng Huang
  10. Christopher K Barlow
  11. Anup D Shah
  12. Ralf B Schittenhelm
  13. Richelle Mychasiuk
  14. Nigel C Jones
  15. Sandy R Shultz
  16. Terence J O’Brien
(2023)
Disease-modifying effects of sodium selenate in a model of drug-resistant, temporal lobe epilepsy
eLife 12:e78877.
https://doi.org/10.7554/eLife.78877

Share this article

https://doi.org/10.7554/eLife.78877

Further reading

    1. Medicine
    Tumininu S Faniyan, Xinyi Zhang ... Kavaljit H Chhabra
    Short Report

    The kidneys facilitate energy conservation through reabsorption of nutrients including glucose. Almost all the filtered blood glucose is reabsorbed by the kidneys. Loss of glucose in urine (glycosuria) is offset by an increase in endogenous glucose production to maintain normal energy supply in the body. How the body senses this glucose loss and consequently enhances glucose production is unclear. Using renal Slc2a2 (also known as Glut2) knockout mice, we demonstrate that elevated glycosuria activates the hypothalamic-pituitary-adrenal axis, which in turn drives endogenous glucose production. This phenotype was attenuated by selective afferent renal denervation, indicating the involvement of the afferent nerves in promoting the compensatory increase in glucose production. In addition, through plasma proteomics analyses we observed that acute phase proteins - which are usually involved in the body’s defense mechanisms against a threat – were the top candidates which were either upregulated or downregulated in renal Slc2a2 KO mice. Overall, afferent renal nerves contribute to promoting endogenous glucose production in response to elevated glycosuria and loss of glucose in urine is sensed as a biological threat in mice. These findings may be useful in improving the efficiency of drugs like SGLT2 inhibitors that are intended to treat hyperglycemia by enhancing glycosuria but are met with a compensatory increase in endogenous glucose production.

    1. Developmental Biology
    2. Medicine
    Stephen E Flaherty III, Olivier Bezy ... Zhidan Wu
    Research Article

    From a forward mutagenetic screen to discover mutations associated with obesity, we identified mutations in the Spag7 gene linked to metabolic dysfunction in mice. Here, we show that SPAG7 KO mice are born smaller and develop obesity and glucose intolerance in adulthood. This obesity does not stem from hyperphagia, but a decrease in energy expenditure. The KO animals also display reduced exercise tolerance and muscle function due to impaired mitochondrial function. Furthermore, SPAG7-deficiency in developing embryos leads to intrauterine growth restriction, brought on by placental insufficiency, likely due to abnormal development of the placental junctional zone. This insufficiency leads to loss of SPAG7-deficient fetuses in utero and reduced birth weights of those that survive. We hypothesize that a ‘thrifty phenotype’ is ingrained in SPAG7 KO animals during development that leads to adult obesity. Collectively, these results indicate that SPAG7 is essential for embryonic development and energy homeostasis later in life.