Abstract

There are no pharmacological disease-modifying treatments that have an enduring effect to mitigate the seizures and comorbidities associated with established chronic temporal lobe epilepsy (TLE). Sodium selenate has been reported to have anti-epileptogenic effects if given before TLE onset. However, the majority of TLE patients already have established epilepsy when they present to the clinic. This study aimed to evaluate for disease modifying effects of sodium selenate treatment in the chronically epileptic rat post-status epilepticus (SE) model of drug-resistant TLE. Wistar rats underwent kainic acid-induced SE or sham. Ten-weeks post-SE, rats were randomly assigned to receive either sodium selenate, levetiracetam, or vehicle subcutaneous infusions continuously for 4 weeks. To evaluate the effects of the treatments, one week of continuous video-EEG was acquired before, during, and 4, 8 weeks post-treatment, followed by behavioral tests. Targeted and untargeted proteomics and metabolomics were performed on post-mortem brain tissue to identify potential pathways associated with modified disease outcomes. Telomere length has emerged as a potential biomarker of chronic brain conditions, was investigated as a novel surrogate marker of epilepsy disease severity in our current study. The results showed that sodium selenate treatment was associated with mitigation of measures of disease severity at 8 weeks post-treatment cessation; reducing the number of spontaneous seizures (p< 0.05), cognitive dysfunction (p< 0.05 in both novel object placement and recognition tasks), and sensorimotor deficits (p< 0.01). Moreover, in the brain post-mortem selenate treatment was associated with increased protein phosphatase 2A (PP2A) expression, reduced hyperphosphorylated tau, and reversed telomere length shortening (p< 0.05). Network medicine integration of multi-omics/ pre-clinical outcomes identified protein-metabolite modules positively correlated with the TLE phenotype. Our results provide evidence that treatment with sodium selenate results in a sustained disease-modifying effect in chronically epileptic rats in the post-KA SE model of TLE, including improved comorbid learning and memory deficits.

Data availability

All the metrodology and results form this work have been included in the manuscrit or as part of the supplementary material.Data has been deposited in Dryad https://doi.org/10.5061/dryad.37pvmcvnd

The following data sets were generated
    1. Casillas-Espinosa PM
    (2022) EEG and multi-omics data
    Dryad Digital Repository, doi:10.5061/dryad.37pvmcvnd.

Article and author information

Author details

  1. Pablo Miguel Casillas-Espinosa

    Department of Neuroscience, Monash University, Melbourne, Australia
    For correspondence
    pablo.casillas-espinosa@monash.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6199-9415
  2. Alison Anderson

    Department of Neuroscience, Monash University, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  3. Anna Harutyunyan

    Department of Neuroscience, Monash University, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  4. Crystal Li

    Department of Neuroscience, Monash University, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  5. Jiyoon Lee

    Department of Medicine, University of Melbourne, Parkville, Australia
    Competing interests
    The authors declare that no competing interests exist.
  6. Emma L Braine

    Department of Neuroscience, Monash University, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  7. Rhys D Brady

    Department of Neuroscience, Monash University, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  8. Mujun Sun

    Department of Neuroscience, Monash University, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  9. Cheng Huang

    Monash Proteomics and Metabolomics Facility, Monash University, Clayton, Australia
    Competing interests
    The authors declare that no competing interests exist.
  10. Christopher K Barlow

    Monash Proteomics and Metabolomics Facility, Monash University, Clayton, Australia
    Competing interests
    The authors declare that no competing interests exist.
  11. Anup D Shah

    Monash Proteomics and Metabolomics Facility, Monash University, Clayton, Australia
    Competing interests
    The authors declare that no competing interests exist.
  12. Ralf B Schittenhelm

    Monash Proteomics and Metabolomics Facility, Monash University, Clayton, Australia
    Competing interests
    The authors declare that no competing interests exist.
  13. Richelle Mychasiuk

    Department of Neuroscience, Monash University, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  14. Nigel C Jones

    Department of Neuroscience, Monash University, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  15. Sandy R Shultz

    Department of Medicine, University of Melbourne, Parkville, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2525-8775
  16. Terence J O’Brien

    Department of Medicine, University of Melbourne, Parkville, Australia
    For correspondence
    Terence.OBrien@monash.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7198-8621

Funding

National Health and Medical Research Council (APP1087172)

  • Pablo Miguel Casillas-Espinosa

University of Melbourne (603834)

  • Pablo Miguel Casillas-Espinosa

CIHR Skin Research Training Centre (PTJ - 153051)

  • Richelle Mychasiuk

National Health and Medical Research Council (Level 2 CDF)

  • Sandy R Shultz

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures were approved by the Florey Animal Ethics Committee (ethics number 16-042-UM), adhered to the Australian code for the care and use of animals for scientific purposes and consistent with ARRIVE 2.0 guidelines

Reviewing Editor

  1. Helen Scharfman, New York University Langone Medical Center, United States

Publication history

  1. Received: March 23, 2022
  2. Accepted: March 8, 2023
  3. Accepted Manuscript published: March 9, 2023 (version 1)

Copyright

© 2023, Casillas-Espinosa et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 206
    Page views
  • 43
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Pablo Miguel Casillas-Espinosa
  2. Alison Anderson
  3. Anna Harutyunyan
  4. Crystal Li
  5. Jiyoon Lee
  6. Emma L Braine
  7. Rhys D Brady
  8. Mujun Sun
  9. Cheng Huang
  10. Christopher K Barlow
  11. Anup D Shah
  12. Ralf B Schittenhelm
  13. Richelle Mychasiuk
  14. Nigel C Jones
  15. Sandy R Shultz
  16. Terence J O’Brien
(2023)
Disease-modifying effects of sodium selenate in a model of drug-resistant, temporal lobe epilepsy
eLife 12:e78877.
https://doi.org/10.7554/eLife.78877

Further reading

    1. Biochemistry and Chemical Biology
    2. Medicine
    CJ Kelly, Reid K Couch ... Anthony S Grillo
    Research Article Updated

    Mitochondrial dysfunction caused by aberrant Complex I assembly and reduced activity of the electron transport chain is pathogenic in many genetic and age-related diseases. Mice missing the Complex I subunit NADH dehydrogenase [ubiquinone] iron-sulfur protein 4 (NDUFS4) are a leading mammalian model of severe mitochondrial disease that exhibit many characteristic symptoms of Leigh Syndrome including oxidative stress, neuroinflammation, brain lesions, and premature death. NDUFS4 knockout mice have decreased expression of nearly every Complex I subunit. As Complex I normally contains at least 8 iron-sulfur clusters and more than 25 iron atoms, we asked whether a deficiency of Complex I may lead to iron perturbations, thereby accelerating disease progression. Consistent with this, iron supplementation accelerates symptoms of brain degeneration in these mice, while iron restriction delays the onset of these symptoms, reduces neuroinflammation, and increases survival. NDUFS4 knockout mice display signs of iron overload in the liver including increased expression of hepcidin and show changes in iron-responsive element-regulated proteins consistent with increased cellular iron that were prevented by iron restriction. These results suggest that perturbed iron homeostasis may contribute to pathology in Leigh Syndrome and possibly other mitochondrial disorders.

    1. Medicine
    Alexandra Polyák, Leila Topal ... András Varró
    Research Article Updated

    The health benefits of regular physical exercise are well known. Even so, there is increasing evidence that the exercise regimes of elite athletes can evoke cardiac arrhythmias including ventricular fibrillation and even sudden cardiac death (SCD). The mechanism of exercise-induced arrhythmia and SCD is poorly understood. Here, we show that chronic training in a canine model (12 sedentary and 12 trained dogs) that mimics the regime of elite athletes induces electrophysiological remodeling (measured by ECG, patch-clamp, and immunocytochemical techniques) resulting in increases of both the trigger and the substrate for ventricular arrhythmias. Thus, 4 months sustained training lengthened ventricular repolarization (QTc: 237.1±3.4 ms vs. 213.6±2.8 ms, n=12; APD90: 472.8±29.6 ms vs. 370.1±32.7 ms, n=29 vs. 25), decreased transient outward potassium current (6.4±0.5 pA/pF vs. 8.8±0.9 pA/pF at 50 mV, n=54 vs. 42), and increased the short-term variability of repolarization (29.5±3.8 ms vs. 17.5±4.0 ms, n=27 vs. 18). Left ventricular fibrosis and HCN4 protein expression were also enhanced. These changes were associated with enhanced ectopic activity (number of escape beats from 0/hr to 29.7±20.3/hr) in vivo and arrhythmia susceptibility (elicited ventricular fibrillation: 3 of 10 sedentary dogs vs. 6 of 10 trained dogs). Our findings provide in vivo, cellular electrophysiological and molecular biological evidence for the enhanced susceptibility to ventricular arrhythmia in an experimental large animal model of endurance training.