Type 1 piliated uropathogenic Escherichia coli hijack the host immune response by binding to CD14

  1. Kathrin Tomasek  Is a corresponding author
  2. Alexander Leithner
  3. Ivana Glatzova
  4. Michael Sebastian Lukesch
  5. Calin C Guet  Is a corresponding author
  6. Michael Sixt  Is a corresponding author
  1. Institute of Science and Technology Austria, Austria
  2. VALANX Biotech GmbH, Austria

Abstract

A key attribute of persistent or recurring bacterial infections is the ability of the pathogen to evade the host's immune response. Many Enterobacteriaceae express type 1 pili, a pre-adapted virulence trait, to invade host epithelial cells and establish persistent infections. However, the molecular mechanisms and strategies by which bacteria actively circumvent the immune response of the host remain poorly understood. Here, we identified CD14, the major co-receptor for lipopolysaccharide detection, on mouse dendritic cells as a binding partner of FimH, the protein located at the tip of the type 1 pilus of Escherichia coli. The FimH amino acids involved in CD14 binding are highly conserved across pathogenic and non-pathogenic strains. Binding of the pathogenic strain CFT073 to CD14 reduced dendritic cell migration by overactivation of integrins and blunted expression of co-stimulatory molecules by overactivating the NFAT pathway, both rate-limiting factors of T cell activation. This response was binary at the single cell level, but averaged in larger populations exposed to both piliated and non-piliated pathogens, presumably via the exchange of immunomodulatory cytokines. While defining an active molecular mechanism of immune evasion by pathogens, the interaction between FimH and CD14 represents a potential target to interfere with persistent and recurrent infections, such as urinary tract infections or Crohn's disease.

Data availability

All data are included in the manuscript. Source data are uploaded with this manuscript.

Article and author information

Author details

  1. Kathrin Tomasek

    Institute of Science and Technology Austria, Klosterneuburg, Austria
    For correspondence
    kathrin.tomasek@epfl.ch
    Competing interests
    Kathrin Tomasek, is an inventor on patent application 21170193.3 (Methods determining the potential of drug for treating bacterial infections and composition for treating bacterial infections").".
  2. Alexander Leithner

    Institute of Science and Technology Austria, Klosterneuburg, Austria
    Competing interests
    No competing interests declared.
  3. Ivana Glatzova

    Institute of Science and Technology Austria, Klosterneuburg, Austria
    Competing interests
    No competing interests declared.
  4. Michael Sebastian Lukesch

    VALANX Biotech GmbH, Klosterneuburg, Austria
    Competing interests
    Michael Sebastian Lukesch, is affiliated with VALANX Biotech GmbH. The author has no financial interests to declare.Is an inventor on patent application 21170193.3 (Methods determining the potential of drug for treating bacterial infections and composition for treating bacterial infections").".
  5. Calin C Guet

    Institute of Science and Technology Austria, Klosterneuburg, Austria
    For correspondence
    calin.guet@ist.ac.at
    Competing interests
    Calin C Guet, is an inventor on patent application 21170193.3 (Methods determining the potential of drug for treating bacterial infections and composition for treating bacterial infections").".
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6220-2052
  6. Michael Sixt

    Institute of Science and Technology Austria, Klosterneuburg, Austria
    For correspondence
    sixt@ist.ac.at
    Competing interests
    Michael Sixt, is an inventor on patent application 21170193.3 (Methods determining the potential of drug for treating bacterial infections and composition for treating bacterial infections").".
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6620-9179

Funding

European Research Council (CoG 724373)

  • Michael Sixt

Austrian Science Fund (FWF P29911)

  • Michael Sixt

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments are in accordance with the Austrian law for animal experiments. Permission was granted by the Austrian Federal Ministry of Science, Research and Economy (identification code: BMWFW 66.018/0010-WF/V/3b/2016). Mice were bred and maintained at the local animal facility in accordance IST Austria Ethical Committee or purchased from Charles River and maintained at the local animal facility in accordance with IST Austria Ethical Committee.

Copyright

© 2022, Tomasek et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,937
    views
  • 376
    downloads
  • 6
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kathrin Tomasek
  2. Alexander Leithner
  3. Ivana Glatzova
  4. Michael Sebastian Lukesch
  5. Calin C Guet
  6. Michael Sixt
(2022)
Type 1 piliated uropathogenic Escherichia coli hijack the host immune response by binding to CD14
eLife 11:e78995.
https://doi.org/10.7554/eLife.78995

Share this article

https://doi.org/10.7554/eLife.78995

Further reading

    1. Immunology and Inflammation
    2. Neuroscience
    Jeremy M Shea, Saul A Villeda
    Research Article

    During aging, microglia – the resident macrophages of the brain – exhibit altered phenotypes and contribute to age-related neuroinflammation. While numerous hallmarks of age-related microglia have been elucidated, the progression from homeostasis to dysfunction during the aging process remains unresolved. To bridge this gap in knowledge, we undertook complementary cellular and molecular analyses of microglia in the mouse hippocampus across the adult lifespan and in the experimental aging model of heterochronic parabiosis. Single-cell RNA-Seq and pseudotime analysis revealed age-related transcriptional heterogeneity in hippocampal microglia and identified intermediate states of microglial aging that also emerge following heterochronic parabiosis. We tested the functionality of intermediate stress response states via TGFβ1 and translational states using pharmacological approaches in vitro to reveal their modulation of the progression to an activated state. Furthermore, we utilized single-cell RNA-Seq in conjunction with in vivo adult microglia-specific Tgfb1 conditional genetic knockout mouse models to demonstrate that microglia advancement through intermediate aging states drives transcriptional inflammatory activation and hippocampal-dependent cognitive decline.

    1. Immunology and Inflammation
    Mohsen Khosravi-Maharlooei, Andrea Vecchione ... Megan Sykes
    Research Article

    Human immune system (HIS) mice constructed in various ways are widely used for investigations of human immune responses to pathogens, transplants, and immunotherapies. In HIS mice that generate T cells de novo from hematopoietic progenitors, T cell-dependent multisystem autoimmune disease occurs, most rapidly when the human T cells develop in the native NOD.Cg- Prkdcscid Il2rgtm1Wjl (NSG) mouse thymus, where negative selection is abnormal. Disease develops very late when human T cells develop in human fetal thymus grafts, where robust negative selection is observed. We demonstrate here that PD-1+CD4+ peripheral (Tph) helper-like and follicular (Tfh) helper-like T cells developing in HIS mice can induce autoimmune disease. Tfh-like cells were more prominent in HIS mice with a mouse thymus, in which the highest levels of IgG were detected in plasma, compared to those with a human thymus. While circulating IgG and IgM antibodies were autoreactive to multiple mouse antigens, in vivo depletion of B cells and antibodies did not delay the development of autoimmune disease. Conversely, adoptive transfer of enriched Tfh- or Tph-like cells induced disease and autoimmunity-associated B cell phenotypes in recipient mice containing autologous human APCs without T cells. Tfh/Tph cells from mice with a human thymus expanded and induced disease more rapidly than those originating in a murine thymus, implicating HLA-restricted T cell-APC interactions in this process. Since Tfh, Tph, autoantibodies, and lymphopenia-induced proliferation (LIP) have all been implicated in various forms of human autoimmune disease, the observations here provide a platform for the further dissection of human autoimmune disease mechanisms and therapies.