Highly efficient generation of isogenic pluripotent stem cell models using prime editing

  1. Hanqin Li
  2. Oriol Busquets
  3. Yogendra Verma
  4. Khaja Mohieddin Syed
  5. Nitzan Kutnowski
  6. Gabriella R Pangilinan
  7. Luke A Gilbert
  8. Helen S Bateup
  9. Donald C Rio  Is a corresponding author
  10. Dirk Hockemeyer
  11. Frank Soldner  Is a corresponding author
  1. University of California, Berkeley, United States
  2. Albert Einstein College of Medicine, United States
  3. University of California, San Francisco, United States

Abstract

The recent development of prime editing (PE) genome engineering technologies has the potential to significantly simplify the generation of human pluripotent stem cell (hPSC)-based disease models. PE is a multi-component editing system that uses a Cas9-nickase fused to a reverse transcriptase (nCas9-RT) and an extended PE guide RNA (pegRNA). Once reverse transcribed, the pegRNA extension functions as a repair template to introduce precise designer mutations at the target site. Here, we systematically compared the editing efficiencies of PE to conventional gene editing methods in hPSCs. This analysis revealed that PE is overall more efficient and precise than homology-directed repair (HDR) of site-specific nuclease-induced double-strand breaks (DSBs). Specifically, PE is more effective in generating heterozygous editing events to create autosomal dominant disease-associated mutations. By stably integrating the nCas9-RT into hPSCs we achieved editing efficiencies equal to those reported for cancer cells, suggesting that the expression of the PE components, rather than cell-intrinsic features, limit PE in hPSCs. To improve the efficiency of PE in hPSCs, we optimized the delivery modalities for the PE components. Delivery of the nCas9-RT as mRNA combined with synthetically generated, chemically-modified pegRNAs and nicking guide RNAs (ngRNAs) improved editing efficiencies up to 13-fold compared to transfecting the prime editing components as plasmids or ribonucleoprotein particles (RNPs). Finally, we demonstrated that this mRNA-based delivery approach can be used repeatedly to yield editing efficiencies exceeding 60% and to correct or introduce familial mutations causing Parkinson's disease in hPSCs.

Data availability

Sequencing data can be accessed through the repository platform Zenodo (10.5281/zenodo.6941502). The datasets for AAVS1 knock-in genotyping, aCGH karyotyping, and the source data files used to generate the featured graphs and tables can be found on Zenodo (10.5281/zenodo.6941599). Plasmids referred to in this paper have been deposited to Addgene's Michael J. Fox Foundation Plasmid Resource and their associated RRID can be found in Supplemental table 2.

The following data sets were generated

Article and author information

Author details

  1. Hanqin Li

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7995-1084
  2. Oriol Busquets

    Dominick P Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1372-9699
  3. Yogendra Verma

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Khaja Mohieddin Syed

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Nitzan Kutnowski

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3012-4616
  6. Gabriella R Pangilinan

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Luke A Gilbert

    Department of Cellular and Molecular Pharmacology, California Institute for Quantitative Biomedical Research, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Helen S Bateup

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0135-0972
  9. Donald C Rio

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    For correspondence
    don_rio@berkeley.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4775-3515
  10. Dirk Hockemeyer

    Department of Molecular and Cellular Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5598-5092
  11. Frank Soldner

    Dominick P Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, United States
    For correspondence
    frank.soldner@einsteinmed.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7102-8655

Funding

Aligning Science Across Parkinson's (ASAP-000486)

  • Luke A Gilbert
  • Helen S Bateup
  • Donald C Rio
  • Dirk Hockemeyer
  • Frank Soldner

Albert Einstein College of Medicine, Yeshiva University (Internal research support from the Department of Neuroscience)

  • Frank Soldner

Siebel Stem Cell Institute (Fellow)

  • Helen S Bateup

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Li et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,581
    views
  • 1,008
    downloads
  • 32
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hanqin Li
  2. Oriol Busquets
  3. Yogendra Verma
  4. Khaja Mohieddin Syed
  5. Nitzan Kutnowski
  6. Gabriella R Pangilinan
  7. Luke A Gilbert
  8. Helen S Bateup
  9. Donald C Rio
  10. Dirk Hockemeyer
  11. Frank Soldner
(2022)
Highly efficient generation of isogenic pluripotent stem cell models using prime editing
eLife 11:e79208.
https://doi.org/10.7554/eLife.79208

Share this article

https://doi.org/10.7554/eLife.79208

Further reading

    1. Genetics and Genomics
    Jake D Lehle, Yu-Huey Lin ... John R McCarrey
    Research Article

    Endocrine disrupting chemicals (EDCs) such as bisphenol S (BPS) are xenobiotic compounds that can disrupt endocrine signaling due to steric similarities to endogenous hormones. EDCs have been shown to induce disruptions in normal epigenetic programming (epimutations) and differentially expressed genes (DEGs) that predispose disease states. Most interestingly, the prevalence of epimutations following exposure to many EDCs persists over multiple generations. Many studies have described direct and prolonged effects of EDC exposure in animal models, but many questions remain about molecular mechanisms by which EDC-induced epimutations are introduced or subsequently propagated, whether there are cell type-specific susceptibilities to the same EDC, and whether this correlates with differential expression of relevant hormone receptors. We exposed cultured pluripotent (iPS), somatic (Sertoli and granulosa), and primordial germ cell-like (PGCLC) cells to BPS and found that differential incidences of BPS-induced epimutations and DEGs correlated with differential expression of relevant hormone receptors inducing epimutations near relevant hormone response elements in somatic and pluripotent, but not germ cell types. Most interestingly, we found that when iPS cells were exposed to BPS and then induced to differentiate into PGCLCs, the prevalence of epimutations and DEGs was largely retained, however, >90% of the specific epimutations and DEGs were replaced by novel epimutations and DEGs. These results suggest a unique mechanism by which an EDC-induced epimutated state may be propagated transgenerationally.

    1. Genetics and Genomics
    Silvia Diz-de Almeida, Raquel Cruz ... Ángel Carracedo
    Research Article

    The genetic basis of severe COVID-19 has been thoroughly studied, and many genetic risk factors shared between populations have been identified. However, reduced sample sizes from non-European groups have limited the discovery of population-specific common risk loci. In this second study nested in the SCOURGE consortium, we conducted a genome-wide association study (GWAS) for COVID-19 hospitalization in admixed Americans, comprising a total of 4702 hospitalized cases recruited by SCOURGE and seven other participating studies in the COVID-19 Host Genetic Initiative. We identified four genome-wide significant associations, two of which constitute novel loci and were first discovered in Latin American populations (BAZ2B and DDIAS). A trans-ethnic meta-analysis revealed another novel cross-population risk locus in CREBBP. Finally, we assessed the performance of a cross-ancestry polygenic risk score in the SCOURGE admixed American cohort. This study constitutes the largest GWAS for COVID-19 hospitalization in admixed Latin Americans conducted to date. This allowed to reveal novel risk loci and emphasize the need of considering the diversity of populations in genomic research.