Neuroscout, a unified platform for generalizable andreproducible fMRI research

  1. Alejandro de la Vega  Is a corresponding author
  2. Roberta Rocca
  3. Ross W Blair
  4. Christopher J Markiewicz
  5. Jeff Mentch
  6. James D Kent
  7. Peer Herholz
  8. Satrajit S Ghosh
  9. Russell A Poldrack
  10. Tal Yarkoni
  1. The University of Texas at Austin, United States
  2. Aarhus University, Denmark
  3. Stanford University, United States
  4. Massachusetts Institute of Technology, United States
  5. McGill University, Canada

Abstract

Functional magnetic resonance imaging (fMRI) has revolutionized cognitive neuroscience, but methodological barriers limit the generalizability of findings from the lab to the real world. Here, we present Neuroscout, an end-to-end platform for analysis of naturalistic fMRI data designed to facilitate the adoption of robust and generalizable research practices. Neuroscout leverages state-of-the-art machine learning models to automatically annotate stimuli from dozens of fMRI studies using naturalistic stimuli-such as movies and narratives-allowing researchers to easily test neuroscientific hypotheses across multiple ecologically-valid datasets. In addition, Neuroscout builds on a robust ecosystem of open tools and standards to provide an easy-to-use analysis builder and a fully automated execution engine that reduce the burden of reproducible research. Through a series of meta-analytic case studies, we validate the automatic feature extraction approach and demonstrate its potential to support more robust fMRI research. Owing to its ease of use and a high degree of automation, Neuroscout makes it possible to overcome modeling challenges commonly arising in naturalistic analysis and to easily scale analyses within and across datasets, democratizing generalizable fMRI research.

Data availability

All code from our processing pipeline and core infrastructure is available online (https://www.github.com/neuroscout/neuroscout). An online supplement including all analysis code and resulting images is available as a public GitHub repository (https://github.com/neuroscout/neuroscout-paper).All analysis results are made publicly available in a public GitHub repository

The following previously published data sets were used
    1. Hanke M
    2. et al
    (2014) studyforrest
    OpenNeuro, doi:10.18112/ openneuro.ds000113 .v1.3.0.
    1. Nastase SA
    2. et al
    (2021) Narratives
    OpenNeuro, doi:10.18112/openneuro.ds002345 .v1.1.4.

Article and author information

Author details

  1. Alejandro de la Vega

    Department of Psychology, The University of Texas at Austin, Austin, United States
    For correspondence
    delavega@utexas.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9062-3778
  2. Roberta Rocca

    Interacting Minds Centre, Aarhus University, Aarhus, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  3. Ross W Blair

    Department of Psychology, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Christopher J Markiewicz

    Department of Psychology, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6533-164X
  5. Jeff Mentch

    McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. James D Kent

    Department of Psychology, The University of Texas at Austin, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Peer Herholz

    Montreal Neurological Institute, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9840-6257
  8. Satrajit S Ghosh

    McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5312-6729
  9. Russell A Poldrack

    Department of Psychology, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Tal Yarkoni

    Department of Psychology, The University of Texas at Austin, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institute of Mental Health (R01MH109682)

  • Alejandro de la Vega
  • Roberta Rocca
  • Ross W Blair
  • Christopher J Markiewicz
  • Jeff Mentch
  • James D Kent
  • Peer Herholz
  • Satrajit S Ghosh
  • Russell A Poldrack
  • Tal Yarkoni

National Institute of Mental Health (R01MH096906)

  • Alejandro de la Vega
  • James D Kent
  • Tal Yarkoni

National Institute of Mental Health (R24MH117179)

  • Peer Herholz
  • Satrajit S Ghosh

National Institute of Mental Health (R24MH117179)

  • Ross W Blair
  • Christopher J Markiewicz
  • Russell A Poldrack

Canada First Research Excellence Fund

  • Peer Herholz

Brain Canada Fondation

  • Peer Herholz

Unifying Neuroscience and Artificial Intelligence - Québec

  • Peer Herholz

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, de la Vega et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,342
    views
  • 235
    downloads
  • 6
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alejandro de la Vega
  2. Roberta Rocca
  3. Ross W Blair
  4. Christopher J Markiewicz
  5. Jeff Mentch
  6. James D Kent
  7. Peer Herholz
  8. Satrajit S Ghosh
  9. Russell A Poldrack
  10. Tal Yarkoni
(2022)
Neuroscout, a unified platform for generalizable andreproducible fMRI research
eLife 11:e79277.
https://doi.org/10.7554/eLife.79277

Share this article

https://doi.org/10.7554/eLife.79277

Further reading

    1. Neuroscience
    Li Shen, Shuo Li ... Yi Jiang
    Research Article

    When observing others’ behaviors, we continuously integrate their movements with the corresponding sounds to enhance perception and develop adaptive responses. However, how the human brain integrates these complex audiovisual cues based on their natural temporal correspondence remains unclear. Using electroencephalogram (EEG), we demonstrated that rhythmic cortical activity tracked the hierarchical rhythmic structures in audiovisually congruent human walking movements and footstep sounds. Remarkably, the cortical tracking effects exhibit distinct multisensory integration modes at two temporal scales: an additive mode in a lower-order, narrower temporal integration window (step cycle) and a super-additive enhancement in a higher-order, broader temporal window (gait cycle). Furthermore, while neural responses at the lower-order timescale reflect a domain-general audiovisual integration process, cortical tracking at the higher-order timescale is exclusively engaged in the integration of biological motion cues. In addition, only this higher-order, domain-specific cortical tracking effect correlates with individuals’ autistic traits, highlighting its potential as a neural marker for autism spectrum disorder. These findings unveil the multifaceted mechanism whereby rhythmic cortical activity supports the multisensory integration of human motion, shedding light on how neural coding of hierarchical temporal structures orchestrates the processing of complex, natural stimuli across multiple timescales.

    1. Neuroscience
    Alessandro Piccin, Anne-Emilie Allain ... Angelo Contarino
    Research Article

    Substance-induced social behavior deficits dramatically worsen the clinical outcome of substance use disorders; yet, the underlying mechanisms remain poorly understood. Herein, we investigated the role for the corticotropin-releasing factor receptor 1 (CRF1) in the acute sociability deficits induced by morphine and the related activity of oxytocin (OXY)- and arginine-vasopressin (AVP)-expressing neurons of the paraventricular nucleus of the hypothalamus (PVN). For this purpose, we used both the CRF1 receptor-preferring antagonist compound antalarmin and the genetic mouse model of CRF1 receptor-deficiency. Antalarmin completely abolished sociability deficits induced by morphine in male, but not in female, C57BL/6J mice. Accordingly, genetic CRF1 receptor-deficiency eliminated morphine-induced sociability deficits in male mice. Ex vivo electrophysiology studies showed that antalarmin also eliminated morphine-induced firing of PVN neurons in male, but not in female, C57BL/6J mice. Likewise, genetic CRF1 receptor-deficiency reduced morphine-induced firing of PVN neurons in a CRF1 gene expression-dependent manner. The electrophysiology results consistently mirrored the behavioral results, indicating a link between morphine-induced PVN activity and sociability deficits. Interestingly, in male mice antalarmin abolished morphine-induced firing in neurons co-expressing OXY and AVP, but not in neurons expressing only AVP. In contrast, in female mice antalarmin did not affect morphine-induced firing of neurons co-expressing OXY and AVP or only OXY, indicating a selective sex-specific role for the CRF1 receptor in opiate-induced PVN OXY activity. The present findings demonstrate a major, sex-linked, role for the CRF1 receptor in sociability deficits and related brain alterations induced by morphine, suggesting new therapeutic strategy for opiate use disorders.