Neuroscout, a unified platform for generalizable andreproducible fMRI research

  1. Alejandro de la Vega  Is a corresponding author
  2. Roberta Rocca
  3. Ross W Blair
  4. Christopher J Markiewicz
  5. Jeff Mentch
  6. James D Kent
  7. Peer Herholz
  8. Satrajit S Ghosh
  9. Russell A Poldrack
  10. Tal Yarkoni
  1. The University of Texas at Austin, United States
  2. Aarhus University, Denmark
  3. Stanford University, United States
  4. Massachusetts Institute of Technology, United States
  5. McGill University, Canada

Abstract

Functional magnetic resonance imaging (fMRI) has revolutionized cognitive neuroscience, but methodological barriers limit the generalizability of findings from the lab to the real world. Here, we present Neuroscout, an end-to-end platform for analysis of naturalistic fMRI data designed to facilitate the adoption of robust and generalizable research practices. Neuroscout leverages state-of-the-art machine learning models to automatically annotate stimuli from dozens of fMRI studies using naturalistic stimuli-such as movies and narratives-allowing researchers to easily test neuroscientific hypotheses across multiple ecologically-valid datasets. In addition, Neuroscout builds on a robust ecosystem of open tools and standards to provide an easy-to-use analysis builder and a fully automated execution engine that reduce the burden of reproducible research. Through a series of meta-analytic case studies, we validate the automatic feature extraction approach and demonstrate its potential to support more robust fMRI research. Owing to its ease of use and a high degree of automation, Neuroscout makes it possible to overcome modeling challenges commonly arising in naturalistic analysis and to easily scale analyses within and across datasets, democratizing generalizable fMRI research.

Data availability

All code from our processing pipeline and core infrastructure is available online (https://www.github.com/neuroscout/neuroscout). An online supplement including all analysis code and resulting images is available as a public GitHub repository (https://github.com/neuroscout/neuroscout-paper).All analysis results are made publicly available in a public GitHub repository

The following previously published data sets were used
    1. Hanke M
    2. et al
    (2014) studyforrest
    OpenNeuro, doi:10.18112/ openneuro.ds000113 .v1.3.0.
    1. Nastase SA
    2. et al
    (2021) Narratives
    OpenNeuro, doi:10.18112/openneuro.ds002345 .v1.1.4.

Article and author information

Author details

  1. Alejandro de la Vega

    Department of Psychology, The University of Texas at Austin, Austin, United States
    For correspondence
    delavega@utexas.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9062-3778
  2. Roberta Rocca

    Interacting Minds Centre, Aarhus University, Aarhus, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  3. Ross W Blair

    Department of Psychology, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Christopher J Markiewicz

    Department of Psychology, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6533-164X
  5. Jeff Mentch

    McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. James D Kent

    Department of Psychology, The University of Texas at Austin, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Peer Herholz

    Montreal Neurological Institute, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9840-6257
  8. Satrajit S Ghosh

    McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5312-6729
  9. Russell A Poldrack

    Department of Psychology, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Tal Yarkoni

    Department of Psychology, The University of Texas at Austin, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institute of Mental Health (R01MH109682)

  • Alejandro de la Vega
  • Roberta Rocca
  • Ross W Blair
  • Christopher J Markiewicz
  • Jeff Mentch
  • James D Kent
  • Peer Herholz
  • Satrajit S Ghosh
  • Russell A Poldrack
  • Tal Yarkoni

National Institute of Mental Health (R01MH096906)

  • Alejandro de la Vega
  • James D Kent
  • Tal Yarkoni

National Institute of Mental Health (R24MH117179)

  • Peer Herholz
  • Satrajit S Ghosh

National Institute of Mental Health (R24MH117179)

  • Ross W Blair
  • Christopher J Markiewicz
  • Russell A Poldrack

Canada First Research Excellence Fund

  • Peer Herholz

Brain Canada Fondation

  • Peer Herholz

Unifying Neuroscience and Artificial Intelligence - Québec

  • Peer Herholz

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, de la Vega et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,366
    views
  • 6
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alejandro de la Vega
  2. Roberta Rocca
  3. Ross W Blair
  4. Christopher J Markiewicz
  5. Jeff Mentch
  6. James D Kent
  7. Peer Herholz
  8. Satrajit S Ghosh
  9. Russell A Poldrack
  10. Tal Yarkoni
(2022)
Neuroscout, a unified platform for generalizable andreproducible fMRI research
eLife 11:e79277.
https://doi.org/10.7554/eLife.79277

Share this article

https://doi.org/10.7554/eLife.79277

Further reading

    1. Immunology and Inflammation
    2. Neuroscience
    Rocio Vicario, Stamatina Fragkogianni ... Frédéric Geissmann
    Research Article

    Somatic genetic heterogeneity resulting from post-zygotic DNA mutations is widespread in human tissues and can cause diseases, however, few studies have investigated its role in neurodegenerative processes such as Alzheimer’s disease (AD). Here, we report the selective enrichment of microglia clones carrying pathogenic variants, that are not present in neuronal, glia/stromal cells, or blood, from patients with AD in comparison to age-matched controls. Notably, microglia-specific AD-associated variants preferentially target the MAPK pathway, including recurrent CBL ring-domain mutations. These variants activate ERK and drive a microglia transcriptional program characterized by a strong neuro-inflammatory response, both in vitro and in patients. Although the natural history of AD-associated microglial clones is difficult to establish in humans, microglial expression of a MAPK pathway activating variant was previously shown to cause neurodegeneration in mice, suggesting that AD-associated neuroinflammatory microglial clones may contribute to the neurodegenerative process in patients.

    1. Developmental Biology
    2. Neuroscience
    Mahima Bose, Ishita Talwar ... Shubha Tole
    Research Article

    In the developing vertebrate central nervous system, neurons and glia typically arise sequentially from common progenitors. Here, we report that the transcription factor Forkhead Box G1 (Foxg1) regulates gliogenesis in the mouse neocortex via distinct cell-autonomous roles in progenitors and postmitotic neurons that regulate different aspects of the gliogenic FGF signalling pathway. We demonstrate that loss of Foxg1 in cortical progenitors at neurogenic stages causes premature astrogliogenesis. We identify a novel FOXG1 target, the pro-gliogenic FGF pathway component Fgfr3, which is suppressed by FOXG1 cell-autonomously to maintain neurogenesis. Furthermore, FOXG1 can also suppress premature astrogliogenesis triggered by the augmentation of FGF signalling. We identify a second novel function of FOXG1 in regulating the expression of gliogenic cues in newborn neocortical upper-layer neurons. Loss of FOXG1 in postmitotic neurons non-autonomously enhances gliogenesis in the progenitors via FGF signalling. These results fit well with the model that newborn neurons secrete cues that trigger progenitors to produce the next wave of cell types, astrocytes. If FGF signalling is attenuated in Foxg1 null progenitors, they progress to oligodendrocyte production. Therefore, loss of FOXG1 transitions the progenitor to a gliogenic state, producing either astrocytes or oligodendrocytes depending on FGF signalling levels. Our results uncover how FOXG1 integrates extrinsic signalling via the FGF pathway to regulate the sequential generation of neurons, astrocytes, and oligodendrocytes in the cerebral cortex.