Neuroscout, a unified platform for generalizable andreproducible fMRI research

  1. Alejandro de la Vega  Is a corresponding author
  2. Roberta Rocca
  3. Ross W Blair
  4. Christopher J Markiewicz
  5. Jeff Mentch
  6. James D Kent
  7. Peer Herholz
  8. Satrajit S Ghosh
  9. Russell A Poldrack
  10. Tal Yarkoni
  1. The University of Texas at Austin, United States
  2. Aarhus University, Denmark
  3. Stanford University, United States
  4. Massachusetts Institute of Technology, United States
  5. McGill University, Canada

Abstract

Functional magnetic resonance imaging (fMRI) has revolutionized cognitive neuroscience, but methodological barriers limit the generalizability of findings from the lab to the real world. Here, we present Neuroscout, an end-to-end platform for analysis of naturalistic fMRI data designed to facilitate the adoption of robust and generalizable research practices. Neuroscout leverages state-of-the-art machine learning models to automatically annotate stimuli from dozens of fMRI studies using naturalistic stimuli-such as movies and narratives-allowing researchers to easily test neuroscientific hypotheses across multiple ecologically-valid datasets. In addition, Neuroscout builds on a robust ecosystem of open tools and standards to provide an easy-to-use analysis builder and a fully automated execution engine that reduce the burden of reproducible research. Through a series of meta-analytic case studies, we validate the automatic feature extraction approach and demonstrate its potential to support more robust fMRI research. Owing to its ease of use and a high degree of automation, Neuroscout makes it possible to overcome modeling challenges commonly arising in naturalistic analysis and to easily scale analyses within and across datasets, democratizing generalizable fMRI research.

Data availability

All code from our processing pipeline and core infrastructure is available online (https://www.github.com/neuroscout/neuroscout). An online supplement including all analysis code and resulting images is available as a public GitHub repository (https://github.com/neuroscout/neuroscout-paper).All analysis results are made publicly available in a public GitHub repository

The following previously published data sets were used
    1. Hanke M
    2. et al
    (2014) studyforrest
    OpenNeuro, doi:10.18112/ openneuro.ds000113 .v1.3.0.
    1. Nastase SA
    2. et al
    (2021) Narratives
    OpenNeuro, doi:10.18112/openneuro.ds002345 .v1.1.4.

Article and author information

Author details

  1. Alejandro de la Vega

    Department of Psychology, The University of Texas at Austin, Austin, United States
    For correspondence
    delavega@utexas.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9062-3778
  2. Roberta Rocca

    Interacting Minds Centre, Aarhus University, Aarhus, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  3. Ross W Blair

    Department of Psychology, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Christopher J Markiewicz

    Department of Psychology, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6533-164X
  5. Jeff Mentch

    McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. James D Kent

    Department of Psychology, The University of Texas at Austin, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Peer Herholz

    Montreal Neurological Institute, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9840-6257
  8. Satrajit S Ghosh

    McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5312-6729
  9. Russell A Poldrack

    Department of Psychology, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Tal Yarkoni

    Department of Psychology, The University of Texas at Austin, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institute of Mental Health (R01MH109682)

  • Alejandro de la Vega
  • Roberta Rocca
  • Ross W Blair
  • Christopher J Markiewicz
  • Jeff Mentch
  • James D Kent
  • Peer Herholz
  • Satrajit S Ghosh
  • Russell A Poldrack
  • Tal Yarkoni

National Institute of Mental Health (R01MH096906)

  • Alejandro de la Vega
  • James D Kent
  • Tal Yarkoni

National Institute of Mental Health (R24MH117179)

  • Peer Herholz
  • Satrajit S Ghosh

National Institute of Mental Health (R24MH117179)

  • Ross W Blair
  • Christopher J Markiewicz
  • Russell A Poldrack

Canada First Research Excellence Fund

  • Peer Herholz

Brain Canada Fondation

  • Peer Herholz

Unifying Neuroscience and Artificial Intelligence - Québec

  • Peer Herholz

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, de la Vega et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,337
    views
  • 235
    downloads
  • 6
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alejandro de la Vega
  2. Roberta Rocca
  3. Ross W Blair
  4. Christopher J Markiewicz
  5. Jeff Mentch
  6. James D Kent
  7. Peer Herholz
  8. Satrajit S Ghosh
  9. Russell A Poldrack
  10. Tal Yarkoni
(2022)
Neuroscout, a unified platform for generalizable andreproducible fMRI research
eLife 11:e79277.
https://doi.org/10.7554/eLife.79277

Share this article

https://doi.org/10.7554/eLife.79277

Further reading

    1. Neuroscience
    Christine Ahrends, Mark W Woolrich, Diego Vidaurre
    Tools and Resources

    Predicting an individual’s cognitive traits or clinical condition using brain signals is a central goal in modern neuroscience. This is commonly done using either structural aspects, such as structural connectivity or cortical thickness, or aggregated measures of brain activity that average over time. But these approaches are missing a central aspect of brain function: the unique ways in which an individual’s brain activity unfolds over time. One reason why these dynamic patterns are not usually considered is that they have to be described by complex, high-dimensional models; and it is unclear how best to use these models for prediction. We here propose an approach that describes dynamic functional connectivity and amplitude patterns using a Hidden Markov model (HMM) and combines it with the Fisher kernel, which can be used to predict individual traits. The Fisher kernel is constructed from the HMM in a mathematically principled manner, thereby preserving the structure of the underlying model. We show here, in fMRI data, that the HMM-Fisher kernel approach is accurate and reliable. We compare the Fisher kernel to other prediction methods, both time-varying and time-averaged functional connectivity-based models. Our approach leverages information about an individual’s time-varying amplitude and functional connectivity for prediction and has broad applications in cognitive neuroscience and personalised medicine.

    1. Neuroscience
    Jessica Royer, Valeria Kebets ... Boris C Bernhardt
    Research Article Updated

    Complex structural and functional changes occurring in typical and atypical development necessitate multidimensional approaches to better understand the risk of developing psychopathology. Here, we simultaneously examined structural and functional brain network patterns in relation to dimensions of psychopathology in the Adolescent Brain Cognitive Development (ABCD) dataset. Several components were identified, recapitulating the psychopathology hierarchy, with the general psychopathology (p) factor explaining most covariance with multimodal imaging features, while the internalizing, externalizing, and neurodevelopmental dimensions were each associated with distinct morphological and functional connectivity signatures. Connectivity signatures associated with the p factor and neurodevelopmental dimensions followed the sensory-to-transmodal axis of cortical organization, which is related to the emergence of complex cognition and risk for psychopathology. Results were consistent in two separate data subsamples and robust to variations in analytical parameters. Although model parameters yielded statistically significant brain–behavior associations in unseen data, generalizability of the model was rather limited for all three latent components (r change from within- to out-of-sample statistics: LC1within = 0.36, LC1out = 0.03; LC2within = 0.34, LC2out = 0.05; LC3within = 0.35, LC3out = 0.07). Our findings help in better understanding biological mechanisms underpinning dimensions of psychopathology, and could provide brain-based vulnerability markers.