Neuroscout, a unified platform for generalizable and reproducible fMRI research
Abstract
Functional magnetic resonance imaging (fMRI) has revolutionized cognitive neuroscience, but methodological barriers limit the generalizability of findings from the lab to the real world. Here, we present Neuroscout, an end-to-end platform for analysis of naturalistic fMRI data designed to facilitate the adoption of robust and generalizable research practices. Neuroscout leverages state-of-the-art machine learning models to automatically annotate stimuli from dozens of fMRI studies using naturalistic stimuli-such as movies and narratives-allowing researchers to easily test neuroscientific hypotheses across multiple ecologically-valid datasets. In addition, Neuroscout builds on a robust ecosystem of open tools and standards to provide an easy-to-use analysis builder and a fully automated execution engine that reduce the burden of reproducible research. Through a series of meta-analytic case studies, we validate the automatic feature extraction approach and demonstrate its potential to support more robust fMRI research. Owing to its ease of use and a high degree of automation, Neuroscout makes it possible to overcome modeling challenges commonly arising in naturalistic analysis and to easily scale analyses within and across datasets, democratizing generalizable fMRI research.
Data availability
All code from our processing pipeline and core infrastructure is available online (https://www.github.com/neuroscout/neuroscout). An online supplement including all analysis code and resulting images is available as a public GitHub repository (https://github.com/neuroscout/neuroscout-paper).All analysis results are made publicly available in a public GitHub repository
-
studyforrestOpenNeuro, doi:10.18112/ openneuro.ds000113 .v1.3.0.
-
Learning Temporal StructureOpenNeuro, doi:10.18112/ openneuro.ds001545.v1.1.1.
-
SherlockOpenNeuro, doi:10.18112/ openneuro.ds001132.v1.0.0.
-
Schematic NarrativeOpenNeuro, doi:10.18112/ openneuro.ds001510.v2.0.2.
-
ParanoiaStoryOpenNeuro, doi:10.18112/openneuro.ds001338 .v1.0.0.
-
BudapestOpenNeuro, doi:10.18112/ openneuro.ds003017.v1.0.3.
-
Naturalistic Neuroimaging Databasedoi:10.18112/openneuro.ds002837.v2.0.0OpenNeuro,.
-
NarrativesOpenNeuro, doi:10.18112/openneuro.ds002345 .v1.1.4.
Article and author information
Author details
Funding
National Institute of Mental Health (R01MH109682)
- Alejandro de la Vega
- Roberta Rocca
- Ross W Blair
- Christopher J Markiewicz
- Jeff Mentch
- James D Kent
- Peer Herholz
- Satrajit S Ghosh
- Russell A Poldrack
- Tal Yarkoni
National Institute of Mental Health (R01MH096906)
- Alejandro de la Vega
- James D Kent
- Tal Yarkoni
National Institute of Mental Health (R24MH117179)
- Peer Herholz
- Satrajit S Ghosh
National Institute of Mental Health (R24MH117179)
- Ross W Blair
- Christopher J Markiewicz
- Russell A Poldrack
Canada First Research Excellence Fund
- Peer Herholz
Brain Canada Fondation
- Peer Herholz
Unifying Neuroscience and Artificial Intelligence - Québec
- Peer Herholz
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2022, de la Vega et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,365
- views
-
- 236
- downloads
-
- 6
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Neuroscience
Social relationships guide individual behavior and ultimately shape the fabric of society. Primates exhibit particularly complex, differentiated, and multidimensional social relationships, which form interwoven social networks, reflecting both individual social tendencies and specific dyadic interactions. How the patterns of behavior that underlie these social relationships emerge from moment-to-moment patterns of social information processing remains unclear. Here, we assess social relationships among a group of four monkeys, focusing on aggression, grooming, and proximity. We show that individual differences in social attention vary with individual differences in patterns of general social tendencies and patterns of individual engagement with specific partners. Oxytocin administration altered social attention and its relationship to both social tendencies and dyadic relationships, particularly grooming and aggression. Our findings link the dynamics of visual information sampling to the dynamics of primate social networks.
-
- Neuroscience
As the global population ages, the prevalence of neurodegenerative disorders is fast increasing. This neurodegeneration as well as other central nervous system (CNS) injuries cause permanent disabilities. Thus, generation of new neurons is the rosetta stone in contemporary neuroscience. Glial cells support CNS homeostasis through evolutionary conserved mechanisms. Upon damage, glial cells activate an immune and inflammatory response to clear the injury site from debris and proliferate to restore cell number. This glial regenerative response (GRR) is mediated by the neuropil-associated glia (NG) in Drosophila, equivalent to vertebrate astrocytes, oligodendrocytes (OL), and oligodendrocyte progenitor cells (OPCs). Here, we examine the contribution of NG lineages and the GRR in response to injury. The results indicate that NG exchanges identities between ensheathing glia (EG) and astrocyte-like glia (ALG). Additionally, we found that NG cells undergo transdifferentiation to yield neurons. Moreover, this transdifferentiation increases in injury conditions. Thus, these data demonstrate that glial cells are able to generate new neurons through direct transdifferentiation. The present work makes a fundamental contribution to the CNS regeneration field and describes a new physiological mechanism to generate new neurons.