Neuroscout, a unified platform for generalizable and reproducible fMRI research
Abstract
Functional magnetic resonance imaging (fMRI) has revolutionized cognitive neuroscience, but methodological barriers limit the generalizability of findings from the lab to the real world. Here, we present Neuroscout, an end-to-end platform for analysis of naturalistic fMRI data designed to facilitate the adoption of robust and generalizable research practices. Neuroscout leverages state-of-the-art machine learning models to automatically annotate stimuli from dozens of fMRI studies using naturalistic stimuli-such as movies and narratives-allowing researchers to easily test neuroscientific hypotheses across multiple ecologically-valid datasets. In addition, Neuroscout builds on a robust ecosystem of open tools and standards to provide an easy-to-use analysis builder and a fully automated execution engine that reduce the burden of reproducible research. Through a series of meta-analytic case studies, we validate the automatic feature extraction approach and demonstrate its potential to support more robust fMRI research. Owing to its ease of use and a high degree of automation, Neuroscout makes it possible to overcome modeling challenges commonly arising in naturalistic analysis and to easily scale analyses within and across datasets, democratizing generalizable fMRI research.
Data availability
All code from our processing pipeline and core infrastructure is available online (https://www.github.com/neuroscout/neuroscout). An online supplement including all analysis code and resulting images is available as a public GitHub repository (https://github.com/neuroscout/neuroscout-paper).All analysis results are made publicly available in a public GitHub repository
-
studyforrestOpenNeuro, doi:10.18112/ openneuro.ds000113 .v1.3.0.
-
Learning Temporal StructureOpenNeuro, doi:10.18112/ openneuro.ds001545.v1.1.1.
-
SherlockOpenNeuro, doi:10.18112/ openneuro.ds001132.v1.0.0.
-
Schematic NarrativeOpenNeuro, doi:10.18112/ openneuro.ds001510.v2.0.2.
-
ParanoiaStoryOpenNeuro, doi:10.18112/openneuro.ds001338 .v1.0.0.
-
BudapestOpenNeuro, doi:10.18112/ openneuro.ds003017.v1.0.3.
-
Naturalistic Neuroimaging Databasedoi:10.18112/openneuro.ds002837.v2.0.0OpenNeuro,.
-
NarrativesOpenNeuro, doi:10.18112/openneuro.ds002345 .v1.1.4.
Article and author information
Author details
Funding
National Institute of Mental Health (R01MH109682)
- Alejandro de la Vega
- Roberta Rocca
- Ross W Blair
- Christopher J Markiewicz
- Jeff Mentch
- James D Kent
- Peer Herholz
- Satrajit S Ghosh
- Russell A Poldrack
- Tal Yarkoni
National Institute of Mental Health (R01MH096906)
- Alejandro de la Vega
- James D Kent
- Tal Yarkoni
National Institute of Mental Health (R24MH117179)
- Peer Herholz
- Satrajit S Ghosh
National Institute of Mental Health (R24MH117179)
- Ross W Blair
- Christopher J Markiewicz
- Russell A Poldrack
Canada First Research Excellence Fund
- Peer Herholz
Brain Canada Fondation
- Peer Herholz
Unifying Neuroscience and Artificial Intelligence - Québec
- Peer Herholz
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2022, de la Vega et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,337
- views
-
- 235
- downloads
-
- 6
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Neuroscience
Dopamine can play opposing physiological roles depending on the receptor subtype. In the fruit fly Drosophila melanogaster, Dop1R1 and Dop2R encode the D1- and D2-like receptors, respectively, and are reported to oppositely regulate intracellular cAMP levels. Here, we profiled the expression and subcellular localization of endogenous Dop1R1 and Dop2R in specific cell types in the mushroom body circuit. For cell-type-specific visualization of endogenous proteins, we employed reconstitution of split-GFP tagged to the receptor proteins. We detected dopamine receptors at both presynaptic and postsynaptic sites in multiple cell types. Quantitative analysis revealed enrichment of both receptors at the presynaptic sites, with Dop2R showing a greater degree of localization than Dop1R1. The presynaptic localization of Dop1R1 and Dop2R in dopamine neurons suggests dual feedback regulation as autoreceptors. Furthermore, we discovered a starvation-dependent, bidirectional modulation of the presynaptic receptor expression in the protocerebral anterior medial (PAM) and posterior lateral 1 (PPL1) clusters, two distinct subsets of dopamine neurons, suggesting their roles in regulating appetitive behaviors. Our results highlight the significance of the co-expression of the two opposing dopamine receptors in the spatial and conditional regulation of dopamine responses in neurons.
-
- Neuroscience
The entorhinal cortex (EC) plays a pivotal role in memory function and spatial navigation, connecting the hippocampus with the neocortex. The EC integrates a wide range of cortical and subcortical inputs, but its synaptic organization in the human brain is largely unknown. We used volume electron microscopy to perform a 3D analysis of the microanatomical features of synapses in all layers of the medial EC (MEC) from the human brain. Using this technology, 12,974 synapses were fully 3D reconstructed at the ultrastructural level. The MEC presented a distinct set of synaptic features, differentiating this region from other human cortical areas. Furthermore, ultrastructural synaptic characteristics within the MEC was predominantly similar, although layers I and VI exhibited several synaptic characteristics that were distinct from other layers. The present study constitutes an extensive description of the synaptic characteristics of the neuropil of all layers of the EC, a crucial step to better understand the connectivity of this cortical region, in both health and disease.