Structural insight on the mechanism of an electron-bifurcating [FeFe] hydrogenase

  1. Chris Furlan
  2. Nipa Chongdar
  3. Pooja Gupta
  4. Wolfgang Lubitz
  5. Hideaki Ogata
  6. James N Blaza  Is a corresponding author
  7. James A Birrell  Is a corresponding author
  1. University of York, United Kingdom
  2. Max Planck Institute for Chemical Energy Conversion, Germany
  3. Nara Institute of Science and Technology, Japan

Abstract

Electron-bifurcation is a fundamental energy conservation mechanism in nature in which two electrons from an intermediate potential electron donor are split so that one is sent along a high potential pathway to a high potential acceptor and the other is sent along a low potential pathway to a low potential acceptor. This process allows endergonic reactions to be driven by exergonic ones and is an alternative, less recognised, mechanism of energy coupling to the well-known chemiosmotic principle. The electron-bifurcating [FeFe] hydrogenase from Thermotoga maritima (HydABC) requires both NADH and ferredoxin to reduce protons generating hydrogen. The mechanism of electron-bifurcation in HydABC remains enigmatic in spite of intense research efforts over the last few years. Structural information may provide the basis for a better understanding of spectroscopic and functional information. Here, we present a 2.3 Å electron cryo-microscopy structure of HydABC. The structure shows a heterododecamer composed of two independent 'halves' each made of two strongly interacting HydABC heterotrimers connected via a [4Fe-4S] cluster. A central electron transfer pathway connects the active sites for NADH oxidation and for proton reduction. We identified two conformations of a flexible iron-sulfur cluster domain: a 'closed bridge' and an 'open bridge' conformation, where a Zn2+ site may act as a 'hinge' allowing domain movement. Based on these structural revelations, we propose a possible mechanism of electron-bifurcation in HydABC where the flavin mononucleotide serves a dual role as both the electron bifurcation center and as the NAD+ reduction/NADH oxidation site.

Data availability

Protein databank (PDB) files for the four model presented in this manuscript are available at https://www.rcsb.org/ under PDB ID 7P5H (D2 tetramer, 7P8N (Bridge closed forward), 7P91 (Bridge closed reverse), and 7P92 (Open bridge). Cryo-EM maps are available at https://www.ebi.ac.uk/pdbe/emdb/. All other data are available in the main text or the supplementary materials.

Article and author information

Author details

  1. Chris Furlan

    Department of Chemistry, University of York, York, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Nipa Chongdar

    Max Planck Institute for Chemical Energy Conversion, Muelheim an der Ruhr, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Pooja Gupta

    Department of Chemistry, University of York, York, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Wolfgang Lubitz

    Max Planck Institute for Chemical Energy Conversion, Muelheim an der Ruhr, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Hideaki Ogata

    Division of Materials Science, Nara Institute of Science and Technology, Nara, Japan
    Competing interests
    The authors declare that no competing interests exist.
  6. James N Blaza

    Department of Chemistry, University of York, York, United Kingdom
    For correspondence
    jamie.blaza@york.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5420-2116
  7. James A Birrell

    Max Planck Institute for Chemical Energy Conversion, Muelheim an der Ruhr, Germany
    For correspondence
    James.Birrell@cec.mpg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0939-0573

Funding

Deutsche Forschungsgemeinschaft (BI 2198/1-1)

  • Nipa Chongdar
  • James A Birrell

UK Research and Innovation (MR/T040742/1)

  • James N Blaza

Japan Society for the Promotion of Science (JP20H03215)

  • Hideaki Ogata

Max-Planck-Gesellschaft (n/a)

  • Nipa Chongdar
  • Wolfgang Lubitz
  • James A Birrell

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Amie K Boal, Pennsylvania State University, United States

Version history

  1. Preprint posted: September 13, 2021 (view preprint)
  2. Received: April 8, 2022
  3. Accepted: August 25, 2022
  4. Accepted Manuscript published: August 26, 2022 (version 1)
  5. Version of Record published: September 21, 2022 (version 2)

Copyright

© 2022, Furlan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,754
    views
  • 456
    downloads
  • 14
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Chris Furlan
  2. Nipa Chongdar
  3. Pooja Gupta
  4. Wolfgang Lubitz
  5. Hideaki Ogata
  6. James N Blaza
  7. James A Birrell
(2022)
Structural insight on the mechanism of an electron-bifurcating [FeFe] hydrogenase
eLife 11:e79361.
https://doi.org/10.7554/eLife.79361

Share this article

https://doi.org/10.7554/eLife.79361

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Natalia Dolgova, Eva-Maria E Uhlemann ... Oleg Y Dmitriev
    Research Article

    Mediator of ERBB2-driven Cell Motility 1 (MEMO1) is an evolutionary conserved protein implicated in many biological processes; however, its primary molecular function remains unknown. Importantly, MEMO1 is overexpressed in many types of cancer and was shown to modulate breast cancer metastasis through altered cell motility. To better understand the function of MEMO1 in cancer cells, we analyzed genetic interactions of MEMO1 using gene essentiality data from 1028 cancer cell lines and found multiple iron-related genes exhibiting genetic relationships with MEMO1. We experimentally confirmed several interactions between MEMO1 and iron-related proteins in living cells, most notably, transferrin receptor 2 (TFR2), mitoferrin-2 (SLC25A28), and the global iron response regulator IRP1 (ACO1). These interactions indicate that cells with high MEMO1 expression levels are hypersensitive to the disruptions in iron distribution. Our data also indicate that MEMO1 is involved in ferroptosis and is linked to iron supply to mitochondria. We have found that purified MEMO1 binds iron with high affinity under redox conditions mimicking intracellular environment and solved MEMO1 structures in complex with iron and copper. Our work reveals that the iron coordination mode in MEMO1 is very similar to that of iron-containing extradiol dioxygenases, which also display a similar structural fold. We conclude that MEMO1 is an iron-binding protein that modulates iron homeostasis in cancer cells.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Isabelle Petit-Hartlein, Annelise Vermot ... Franck Fieschi
    Research Article

    NADPH oxidases (NOX) are transmembrane proteins, widely spread in eukaryotes and prokaryotes, that produce reactive oxygen species (ROS). Eukaryotes use the ROS products for innate immune defense and signaling in critical (patho)physiological processes. Despite the recent structures of human NOX isoforms, the activation of electron transfer remains incompletely understood. SpNOX, a homolog from Streptococcus pneumoniae, can serves as a robust model for exploring electron transfers in the NOX family thanks to its constitutive activity. Crystal structures of SpNOX full-length and dehydrogenase (DH) domain constructs are revealed here. The isolated DH domain acts as a flavin reductase, and both constructs use either NADPH or NADH as substrate. Our findings suggest that hydride transfer from NAD(P)H to FAD is the rate-limiting step in electron transfer. We identify significance of F397 in nicotinamide access to flavin isoalloxazine and confirm flavin binding contributions from both DH and Transmembrane (TM) domains. Comparison with related enzymes suggests that distal access to heme may influence the final electron acceptor, while the relative position of DH and TM does not necessarily correlate with activity, contrary to previous suggestions. It rather suggests requirement of an internal rearrangement, within the DH domain, to switch from a resting to an active state. Thus, SpNOX appears to be a good model of active NOX2, which allows us to propose an explanation for NOX2’s requirement for activation.