Machine learning-assisted fluoroscopy of bladder function in awake mice

  1. Helene De Bruyn
  2. Nikky Corthout
  3. Sebastian Munck
  4. Wouter Everaerts
  5. Thomas Voets  Is a corresponding author
  1. Laboratory of Ion Channel Research (LICR), VIB-KU Leuven Center for Brain & Disease Research, Belgium
  2. Department of Cellular and Molecular Medicine, KU Leuven, Belgium
  3. VIB BioImaging Core – VIB-KU Leuven Center for Brain & Disease Research, KU Leuven Neuroscience Department, Belgium
  4. Laboratory of Organ System, Department of Development and Regeneration, KU Leuven, Belgium
4 figures, 1 table and 1 additional file

Figures

Figure 1 with 3 supplements
A machine-learning protocol for the automated annotation of the bladder in fluoroscopic images.

(A) Image analysis protocol using artificial intelligence-based automatic annotation of the bladder border. (B) Representative bladder volume trace from an anesthetized animal (1.2 g/kg urethane) …

Figure 1—figure supplement 1
Effect of rolling averaging on voiding parameters.

(A, B) Simulated time course of a bladder, filled at 20 μl/min, that fully voids at time point 300 s (black trace; no averaging). Panel B zooms in on the 4 s surrounding the void, showing individual …

Figure 1—video 1
Video showing fluoroscopic imaging of a void in an awake mouse.

Bladder circumference detected by artificial intelligence-assisted automated annotation procedure is overlaid.

Figure 1—video 2
Video showing fluoroscopic imaging of a void in a urethane anesthetized mouse.
Dose-dependent effects of urethane on bladder volume and voiding efficiency.

(A, B) Short excerpts of simultaneous bladder volume and intravesical pressure recordings traces at increasing cumulative doses of urethane in catheterized mice. (C–F) Average bladder capacity, …

Dose-dependent effects of urethane on the voiding process.

(A) Zoomed-in examples of average bladder volume, bladder pressure, urethral flow rate, and urethral flow conductance at increasing doses of urethane in catheterized mice. (B) Combined 2D/3D …

Noninvasive fluoroscopic volumetry.

(A) Fluoroscopic image showing the presence of a contrast agent in the scruff (arrow) and in the bladder of an awake and nonrestrained mouse, as well as the automatic annotation of the bladder …

Tables

Key resources table
Reagent type (species) or resourceDesignationSource or referenceIdentifiersAdditional information
Strain, strain background (Mus musculus)Wild-type miceJanvierC57BL/6J12- to 16-week-old females
Chemical compound, drugIsofluraneDechra veterinary productsIso-vetAnesthesia
Chemical compound, drugCarprofenZoetisRimadylAnalgesia
Chemical compound, drugSurgical skin glueVygon
Chemical compound, drugIomeprolBracco Imaging EuropeIomeron 250Contrast agent
Chemical compound, drugIodixanolGE HealthcareVisipaque 320 mg I/mlContrast agent
Chemical compound, drugUrethaneSigma-AldrichAnesthesia
Chemical compound, drugFurosemideSanofiLasixDiuretic
Software, algorithmImageJ/FIJINIHRRID:SCR_002865Image processing
Software, algorithmIgor ProWavemetricsRRID:SCR_000325Data processing
Software, algorithmOrigin 9.0OriginlabRRID:SCR_014212Data processing
Software, algorithmNIS-Elements; NIS.aiNikonRRID:SCR_014329Image processing

Additional files

Download links