Abstract

Most studies of cohesin function consider the Stromalin Antigen (STAG/SA) proteins as core complex members given their ubiquitous interaction with the cohesin ring. Here, we provide functional data to support the notion that the SA subunit is not a mere passenger in this structure, but instead plays a key role in the localization of cohesin to diverse biological processes and promotes loading of the complex at these sites. We show that in cells acutely depleted for RAD21, SA proteins remain bound to chromatin, cluster in 3D and interact with CTCF, as well as with a wide range of RNA binding proteins involved in multiple RNA processing mechanisms. Accordingly, SA proteins interact with RNA, RNA binding proteins and R-loops, even in the absence of cohesin. Our results place SA1 on chromatin upstream of the cohesin ring and reveal a role for SA1 in cohesin loading which is independent of NIPBL, the canonical cohesin loader. We propose that SA1 takes advantage of structural R-loop platforms to link cohesin loading and chromatin structure with diverse functions. Since SA proteins are pan-cancer targets, and R-loops play an increasingly prevalent role in cancer biology, our results have important implications for the mechanistic understanding of SA proteins in cancer and disease.

Data availability

All data has been made freely available. Please see Page 21 of the manuscript for Accession numbers.

The following data sets were generated

Article and author information

Author details

  1. Hayley Porter

    Research Department of Cancer Biology, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Yang Li

    Research Department of Cancer Biology, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Maria Victoria  Neguembor

    Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1583-1304
  4. Manuel Beltran

    Regulatory Genomics Group, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Wazeer Varsally

    Research Department of Cancer Biology, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Laura Martin

    Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8801-6637
  7. Manuel Tavares Cornejo

    Regulatory Genomics Group, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Dubravka Pezic

    Research Department of Cancer Biology, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Amandeep Bhamra

    Proteomics Research, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Silvia Surinova

    Proteomics Research, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  11. Richard G Jenner

    Regulatory Genomics Group, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  12. Maria Pia Cosma

    Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4207-5097
  13. Suzana Hadjur

    Research Department of Cancer Biology, University College London, London, United Kingdom
    For correspondence
    s.hadjur@ucl.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3146-3118

Funding

Wellcome Trust (106985/Z/15/Z)

  • Suzana Hadjur

Cancer Research UK (PhD studentship)

  • Hayley Porter

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Porter et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,340
    views
  • 462
    downloads
  • 12
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hayley Porter
  2. Yang Li
  3. Maria Victoria  Neguembor
  4. Manuel Beltran
  5. Wazeer Varsally
  6. Laura Martin
  7. Manuel Tavares Cornejo
  8. Dubravka Pezic
  9. Amandeep Bhamra
  10. Silvia Surinova
  11. Richard G Jenner
  12. Maria Pia Cosma
  13. Suzana Hadjur
(2023)
Cohesin-independent STAG proteins interact with RNA and R-loops and promote complex loading
eLife 12:e79386.
https://doi.org/10.7554/eLife.79386

Share this article

https://doi.org/10.7554/eLife.79386

Further reading

    1. Cell Biology
    Jessica Y Chotiner, N Adrian Leu ... P Jeremy Wang
    Research Article

    Meiotic progression requires coordinated assembly and disassembly of protein complexes involved in chromosome synapsis and meiotic recombination. Mouse TRIP13 and its ortholog Pch2 are instrumental in remodeling HORMA domain proteins. HORMAD proteins are associated with unsynapsed chromosome axes but depleted from the synaptonemal complex (SC) of synapsed homologs. Here we report that TRIP13 localizes to the synapsed SC in early pachytene spermatocytes and to telomeres throughout meiotic prophase I. Loss of TRIP13 leads to meiotic arrest and thus sterility in both sexes. Trip13-null meiocytes exhibit abnormal persistence of HORMAD1 and HOMRAD2 on synapsed SC and chromosome asynapsis that preferentially affects XY and centromeric ends. These major phenotypes are consistent with reported phenotypes of Trip13 hypomorph alleles. Trip13 heterozygous mice exhibit meiotic defects that are less severe than the Trip13-null mice, showing that TRIP13 is a dosage-sensitive regulator of meiosis. Localization of TRIP13 to the synapsed SC is independent of SC axial element proteins such as REC8 and SYCP2/SYCP3. Terminal FLAG-tagged TRIP13 proteins are functional and recapitulate the localization of native TRIP13 to SC and telomeres. Therefore, the evolutionarily conserved localization of TRIP13/Pch2 to the synapsed chromosomes provides an explanation for dissociation of HORMA domain proteins upon synapsis in diverse organisms.

    1. Cell Biology
    Johanna Odenwald, Bernardo Gabiatti ... Susanne Kramer
    Research Article

    Immunofluorescence localises proteins via fluorophore-labelled antibodies. However, some proteins evade detection due to antibody-accessibility issues or because they are naturally low abundant or antigen density is reduced by the imaging method. Here, we show that the fusion of the target protein to the biotin ligase TurboID and subsequent detection of biotinylation by fluorescent streptavidin offers an ‘all in one’ solution to these restrictions. For all proteins tested, the streptavidin signal was significantly stronger than an antibody signal, markedly improving the sensitivity of expansion microscopy and correlative light and electron microscopy. Importantly, proteins within phase-separated regions, such as the central channel of the nuclear pores, the nucleolus, or RNA granules, were readily detected with streptavidin, while most antibodies failed. When TurboID is used in tandem with an HA epitope tag, co-probing with streptavidin and anti-HA can map antibody-accessibility and we created such a map for the trypanosome nuclear pore. Lastly, we show that streptavidin imaging resolves dynamic, temporally, and spatially distinct sub-complexes and, in specific cases, reveals a history of dynamic protein interaction. In conclusion, streptavidin imaging has major advantages for the detection of lowly abundant or inaccessible proteins and in addition, provides information on protein interactions and biophysical environment.