MicroRNA-eQTLs in the developing human neocortex link miR-4707-3p expression to brain size

  1. Michael J Lafferty
  2. Nil Aygün
  3. Niyanta K Patel
  4. Oleh Krupa
  5. Dan Liang
  6. Justin M Wolter
  7. Daniel H Geschwind
  8. Luis de la Torre-Ubieta
  9. Jason L Stein  Is a corresponding author
  1. University of North Carolina at Chapel Hill, United States
  2. University of California, Los Angeles, United States

Abstract

Expression quantitative trait loci (eQTL) data have proven important for linking non-coding loci to protein-coding genes. But eQTL studies rarely measure microRNAs (miRNAs), small non-coding RNAs known to play a role in human brain development and neurogenesis. Here, we performed small-RNA sequencing across 212 mid-gestation human neocortical tissue samples, measured 907 expressed miRNAs, discovering 111 of which were novel, and identified 85 local-miRNA-eQTLs. Colocalization of miRNA-eQTLs with GWAS summary statistics yielded one robust colocalization of miR-4707-3p expression with educational attainment and brain size phenotypes, where the miRNA expression increasing allele was associated with decreased brain size. Exogenous expression of miR-4707-3p in primary human neural progenitor cells decreased expression of predicted targets and increased cell proliferation, indicating miR-4707-3p modulates progenitor gene regulation and cell fate decisions. Integrating miRNA-eQTLs with existing GWAS yielded evidence of a miRNA that may influence human brain size and function via modulation of neocortical brain development.

Data availability

Small RNA-sequencing data and sample genotypes will be available via dbGaP with study accession number phs003106.v1.p1. Total RNA-sequencing data can be found under the dbGaP study phs001900.v1.p1. Scripts used to reproduce the analyses presented here are available via bitbucket code repository at https://bitbucket.org/steinlabunc/mirna-eqtl-manuscript/.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Michael J Lafferty

    Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Nil Aygün

    Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Niyanta K Patel

    Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Oleh Krupa

    Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Dan Liang

    Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Justin M Wolter

    Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Daniel H Geschwind

    Department of Neurology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2896-3450
  8. Luis de la Torre-Ubieta

    Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Jason L Stein

    Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, United States
    For correspondence
    jason_stein@med.unc.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4829-0513

Funding

National Institutes of Health (R01MH120125,R01MH118349,U54EB020403,R00MH102357)

  • Jason L Stein

National Institute of General Medical Sciences (5T32GM067553-13)

  • Michael J Lafferty

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Human fetal brain tissue was obtained from the UCLA Gene and Cell Therapy Core following institutional review board regulations. This study was declared Exempt by the UNC Institutional Review Board (16-0054).

Copyright

© 2023, Lafferty et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,486
    views
  • 135
    downloads
  • 5
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Michael J Lafferty
  2. Nil Aygün
  3. Niyanta K Patel
  4. Oleh Krupa
  5. Dan Liang
  6. Justin M Wolter
  7. Daniel H Geschwind
  8. Luis de la Torre-Ubieta
  9. Jason L Stein
(2023)
MicroRNA-eQTLs in the developing human neocortex link miR-4707-3p expression to brain size
eLife 12:e79488.
https://doi.org/10.7554/eLife.79488

Share this article

https://doi.org/10.7554/eLife.79488

Further reading

    1. Genetics and Genomics
    Nathan M Shugarts Devanapally, Aishwarya Sathya ... Antony M Jose
    Research Article

    RNAs in circulation carry sequence-specific regulatory information between cells in plant, animal, and host-pathogen systems. Such RNA can cross generational boundaries, as evidenced by somatic double-stranded RNA (dsRNA) in the nematode Caenorhabditis elegans silencing genes of matching sequence in progeny. Here we dissect the intergenerational path taken by dsRNA from parental circulation and discover that cytosolic import through the dsRNA importer SID-1 in the parental germline and/or developing progeny varies with developmental time and dsRNA substrates. Loss of SID-1 enhances initiation of heritable RNA silencing within the germline and causes changes in the expression of the sid-1-dependent gene sdg-1 that last for more than 100 generations after restoration of SID-1. The SDG-1 protein is enriched in perinuclear germ granules required for heritable RNA silencing but is expressed from a retrotransposon targeted by such silencing. This auto-inhibitory loop suggests how retrotransposons could persist by hosting genes that regulate their own silencing.

    1. Cell Biology
    2. Genetics and Genomics
    Adam D Longhurst, Kyle Wang ... David P Toczyski
    Tools and Resources

    Progression through the G1 phase of the cell cycle is the most highly regulated step in cellular division. We employed a chemogenetic approach to discover novel cellular networks that regulate cell cycle progression. This approach uncovered functional clusters of genes that altered sensitivity of cells to inhibitors of the G1/S transition. Mutation of components of the Polycomb Repressor Complex 2 rescued proliferation inhibition caused by the CDK4/6 inhibitor palbociclib, but not to inhibitors of S phase or mitosis. In addition to its core catalytic subunits, mutation of the PRC2.1 accessory protein MTF2, but not the PRC2.2 protein JARID2, rendered cells resistant to palbociclib treatment. We found that PRC2.1 (MTF2), but not PRC2.2 (JARID2), was critical for promoting H3K27me3 deposition at CpG islands genome-wide and in promoters. This included the CpG islands in the promoter of the CDK4/6 cyclins CCND1 and CCND2, and loss of MTF2 lead to upregulation of both CCND1 and CCND2. Our results demonstrate a role for PRC2.1, but not PRC2.2, in antagonizing G1 progression in a diversity of cell linages, including chronic myeloid leukemia (CML), breast cancer, and immortalized cell lines.