Enhancing and inhibitory motifs regulate CD4 activity

  1. Mark S Lee
  2. Peter J Tuohy
  3. Caleb Y Kim
  4. Katrina Lichauco
  5. Heather L Parrish
  6. Koenraad Van Doorslaer  Is a corresponding author
  7. Michael S Kuhns  Is a corresponding author
  1. University of Arizona College of Medicine, United States
  2. University of Arizona, United States

Abstract

CD4+ T cells use T cell receptor (TCR)-CD3 complexes, and CD4, to respond to peptide antigens within MHCII molecules (pMHCII). We report here that, through ~435 million years of evolution in jawed vertebrates, purifying selection has shaped motifs in the extracellular, transmembrane, and intracellular domains of eutherian CD4 that enhance pMHCII responses, and covary with residues in an intracellular motif that inhibits responses. Importantly, while CD4 interactions with the Src kinase, Lck, are viewed as key to pMHCII responses, our data indicate that CD4-Lck interactions derive their importance from the counterbalancing activity of the inhibitory motif, as well as motifs that direct CD4-Lck pairs to specific membrane compartments. These results have implications for the evolution and function of complex transmembrane receptors and for biomimetic engineering.

Data availability

Raw data, including alignments and phylogenetic trees, associated with figures 1 and S1 as well as source data and statistics for remaining figures are available on Dryad (https://doi.org/10.5061/dryad.59zw3r26z).

The following data sets were generated

Article and author information

Author details

  1. Mark S Lee

    Department of Immunobiology, University of Arizona College of Medicine, Tucson, United States
    Competing interests
    No competing interests declared.
  2. Peter J Tuohy

    Department of Immunobiology, University of Arizona College of Medicine, Tucson, United States
    Competing interests
    No competing interests declared.
  3. Caleb Y Kim

    Department of Immunobiology, University of Arizona College of Medicine, Tucson, United States
    Competing interests
    No competing interests declared.
  4. Katrina Lichauco

    Department of Immunobiology, University of Arizona College of Medicine, Tucson, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9480-2893
  5. Heather L Parrish

    Department of Immunobiology, University of Arizona College of Medicine, Tucson, United States
    Competing interests
    No competing interests declared.
  6. Koenraad Van Doorslaer

    School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, United States
    For correspondence
    vandoorslaer@arizona.edu
    Competing interests
    No competing interests declared.
  7. Michael S Kuhns

    Department of Immunobiology, University of Arizona College of Medicine, Tucson, United States
    For correspondence
    mkuhns@email.arizona.edu
    Competing interests
    Michael S Kuhns, has disclosed an outside interest in Module Therapeutics to the University of Arizona. Conflicts of interest resulting from this interest are being managed by the University of Arizona in accordance with their policies..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0403-6313

Funding

National Institute of Allergy and Infectious Diseases (R01AI101053)

  • Michael S Kuhns

Cancer Center Support Grant (CCSG-CA 023074)

  • Michael S Kuhns

AZ TRIF Funds

  • Koenraad Van Doorslaer

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Lee et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,479
    views
  • 320
    downloads
  • 6
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mark S Lee
  2. Peter J Tuohy
  3. Caleb Y Kim
  4. Katrina Lichauco
  5. Heather L Parrish
  6. Koenraad Van Doorslaer
  7. Michael S Kuhns
(2022)
Enhancing and inhibitory motifs regulate CD4 activity
eLife 11:e79508.
https://doi.org/10.7554/eLife.79508

Share this article

https://doi.org/10.7554/eLife.79508

Further reading

    1. Ecology
    2. Evolutionary Biology
    Justine Boutry, Océane Rieu ... Fréderic Thomas
    Research Article

    While host phenotypic manipulation by parasites is a widespread phenomenon, whether tumors, which can be likened to parasite entities, can also manipulate their hosts is not known. Theory predicts that this should nevertheless be the case, especially when tumors (neoplasms) are transmissible. We explored this hypothesis in a cnidarian Hydra model system, in which spontaneous tumors can occur in the lab, and lineages in which such neoplastic cells are vertically transmitted (through host budding) have been maintained for over 15 years. Remarkably, the hydras with long-term transmissible tumors show an unexpected increase in the number of their tentacles, allowing for the possibility that these neoplastic cells can manipulate the host. By experimentally transplanting healthy as well as neoplastic tissues derived from both recent and long-term transmissible tumors, we found that only the long-term transmissible tumors were able to trigger the growth of additional tentacles. Also, supernumerary tentacles, by permitting higher foraging efficiency for the host, were associated with an increased budding rate, thereby favoring the vertical transmission of tumors. To our knowledge, this is the first evidence that, like true parasites, transmissible tumors can evolve strategies to manipulate the phenotype of their host.

    1. Evolutionary Biology
    2. Microbiology and Infectious Disease
    Zach Hensel
    Short Report

    Accurate estimation of the effects of mutations on SARS-CoV-2 viral fitness can inform public-health responses such as vaccine development and predicting the impact of a new variant; it can also illuminate biological mechanisms including those underlying the emergence of variants of concern. Recently, Lan et al. reported a model of SARS-CoV-2 secondary structure and its underlying dimethyl sulfate reactivity data (Lan et al., 2022). I investigated whether base reactivities and secondary structure models derived from them can explain some variability in the frequency of observing different nucleotide substitutions across millions of patient sequences in the SARS-CoV-2 phylogenetic tree. Nucleotide basepairing was compared to the estimated ‘mutational fitness’ of substitutions, a measurement of the difference between a substitution’s observed and expected frequency that is correlated with other estimates of viral fitness (Bloom and Neher, 2023). This comparison revealed that secondary structure is often predictive of substitution frequency, with significant decreases in substitution frequencies at basepaired positions. Focusing on the mutational fitness of C→U, the most common type of substitution, I describe C→U substitutions at basepaired positions that characterize major SARS-CoV-2 variants; such mutations may have a greater impact on fitness than appreciated when considering substitution frequency alone.