Enhancing and inhibitory motifs regulate CD4 activity

  1. Mark S Lee
  2. Peter J Tuohy
  3. Caleb Y Kim
  4. Katrina Lichauco
  5. Heather L Parrish
  6. Koenraad Van Doorslaer  Is a corresponding author
  7. Michael S Kuhns  Is a corresponding author
  1. University of Arizona College of Medicine, United States
  2. University of Arizona, United States

Abstract

CD4+ T cells use T cell receptor (TCR)-CD3 complexes, and CD4, to respond to peptide antigens within MHCII molecules (pMHCII). We report here that, through ~435 million years of evolution in jawed vertebrates, purifying selection has shaped motifs in the extracellular, transmembrane, and intracellular domains of eutherian CD4 that enhance pMHCII responses, and covary with residues in an intracellular motif that inhibits responses. Importantly, while CD4 interactions with the Src kinase, Lck, are viewed as key to pMHCII responses, our data indicate that CD4-Lck interactions derive their importance from the counterbalancing activity of the inhibitory motif, as well as motifs that direct CD4-Lck pairs to specific membrane compartments. These results have implications for the evolution and function of complex transmembrane receptors and for biomimetic engineering.

Data availability

Raw data, including alignments and phylogenetic trees, associated with figures 1 and S1 as well as source data and statistics for remaining figures are available on Dryad (https://doi.org/10.5061/dryad.59zw3r26z).

The following data sets were generated

Article and author information

Author details

  1. Mark S Lee

    Department of Immunobiology, University of Arizona College of Medicine, Tucson, United States
    Competing interests
    No competing interests declared.
  2. Peter J Tuohy

    Department of Immunobiology, University of Arizona College of Medicine, Tucson, United States
    Competing interests
    No competing interests declared.
  3. Caleb Y Kim

    Department of Immunobiology, University of Arizona College of Medicine, Tucson, United States
    Competing interests
    No competing interests declared.
  4. Katrina Lichauco

    Department of Immunobiology, University of Arizona College of Medicine, Tucson, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9480-2893
  5. Heather L Parrish

    Department of Immunobiology, University of Arizona College of Medicine, Tucson, United States
    Competing interests
    No competing interests declared.
  6. Koenraad Van Doorslaer

    School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, United States
    For correspondence
    vandoorslaer@arizona.edu
    Competing interests
    No competing interests declared.
  7. Michael S Kuhns

    Department of Immunobiology, University of Arizona College of Medicine, Tucson, United States
    For correspondence
    mkuhns@email.arizona.edu
    Competing interests
    Michael S Kuhns, has disclosed an outside interest in Module Therapeutics to the University of Arizona. Conflicts of interest resulting from this interest are being managed by the University of Arizona in accordance with their policies..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0403-6313

Funding

National Institute of Allergy and Infectious Diseases (R01AI101053)

  • Michael S Kuhns

Cancer Center Support Grant (CCSG-CA 023074)

  • Michael S Kuhns

AZ TRIF Funds

  • Koenraad Van Doorslaer

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Richard N McLaughlin, Pacific Northwest Research Institute, United States

Version history

  1. Preprint posted: April 30, 2021 (view preprint)
  2. Received: April 15, 2022
  3. Accepted: July 20, 2022
  4. Accepted Manuscript published: July 21, 2022 (version 1)
  5. Version of Record published: July 28, 2022 (version 2)

Copyright

© 2022, Lee et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,296
    views
  • 290
    downloads
  • 6
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mark S Lee
  2. Peter J Tuohy
  3. Caleb Y Kim
  4. Katrina Lichauco
  5. Heather L Parrish
  6. Koenraad Van Doorslaer
  7. Michael S Kuhns
(2022)
Enhancing and inhibitory motifs regulate CD4 activity
eLife 11:e79508.
https://doi.org/10.7554/eLife.79508

Share this article

https://doi.org/10.7554/eLife.79508

Further reading

    1. Evolutionary Biology
    Tian Yue, Yongbo Guo ... Bing Su
    Research Article

    Compared with lowlander migrants, native Tibetans have a higher reproductive success at high altitude though the underlying mechanism remains unclear. Here, we compared the transcriptome and histology of full-term placentas between native Tibetans and Han migrants. We found that the placental trophoblast shows the largest expression divergence between Tibetans and Han, and Tibetans show decreased immune response and endoplasmic reticulum stress. Remarkably, we detected a sex-biased expression divergence, where the male-infant placentas show a greater between-population difference than the female-infant placentas. The umbilical cord plays a key role in the sex-biased expression divergence, which is associated with the higher birth weight of the male newborns of Tibetans. We also identified adaptive histological changes in the male-infant placentas of Tibetans, including larger umbilical artery wall and umbilical artery intima and media, and fewer syncytial knots. These findings provide valuable insights into the sex-biased adaptation of human populations, with significant implications for medical and genetic studies of human reproduction.

    1. Evolutionary Biology
    Isabella Tomanek
    Insight

    Laboratory experiments on a fluorescent protein in E. coli reveal how duplicate genes are rapidly inactivated by mutations during evolution.