An auto-inhibited state of protein kinase G and implications for selective activation

  1. Rajesh Sharma
  2. Jeong Joo Kim
  3. Liying Qin
  4. Philipp Henning
  5. Madoka Akimoto
  6. Bryan VanSchouwen
  7. Gundeep Kaur
  8. Banumathi Sankaran
  9. Kevin R MacKenzie  Is a corresponding author
  10. Giuseppe Melacini
  11. Darren E Casteel
  12. Fritz W Herberg
  13. Choel W Kim  Is a corresponding author
  1. Baylor College of Medicine, United States
  2. University of Kassel, Germany
  3. McMaster University, Canada
  4. Lawrence Berkeley National Laboratory, United States
  5. University of California, San Diego, United States

Abstract

Cyclic GMP-dependent protein kinases (PKGs) are key mediators of the nitric oxide/cGMP signaling pathway that regulates biological functions as diverse as smooth muscle contraction, cardiac function, and axon guidance. Understanding how cGMP differentially triggers mammalian PKG isoforms could lead to new therapeutics that inhibit or activate PKGs, complementing drugs that target nitric oxide synthases and cyclic nucleotide phosphodiesterases in this signaling axis. Alternate splicing of PRKG1 transcripts confers distinct leucine zippers, linkers, and auto-inhibitory pseudo-substrate sequences to PKG Iα and Iβ that result in isoform-specific activation properties, but the mechanism of enzyme auto-inhibition and its alleviation by cGMP is not well understood. Here we present a crystal structure of PKG Iβ in which the auto-inhibitory sequence and the cyclic nucleotide binding domains are bound to the catalytic domain, providing a snapshot of the auto-inhibited state. Specific contacts between the PKG Iβ auto-inhibitory sequence and the enzyme active site help explain isoform-specific activation constants and the effects of phosphorylation in the linker. We also present a crystal structure of a PKG I cyclic nucleotide binding domain with an activating mutation linked to Thoracic Aortic Aneurysms and Dissections. Similarity of this structure to wild type cGMP-bound domains and differences with the auto-inhibited enzyme provide a mechanistic basis for constitutive activation. We show that PKG Iβ auto-inhibition is mediated by contacts within each monomer of the native full-length dimeric protein, and using the available structural and biochemical data we develop a model for the regulation and cooperative activation of PKGs.

Data availability

Diffraction data have been deposited in PDB under the accession codes 7LV3 and 7MBJ.

The following data sets were generated

Article and author information

Author details

  1. Rajesh Sharma

    Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Jeong Joo Kim

    Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Liying Qin

    Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Philipp Henning

    Department of Biochemistry, University of Kassel, kassel, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Madoka Akimoto

    Department of Chemistry and Chemical Biology, McMaster University, Ontario, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. Bryan VanSchouwen

    Department of Chemistry and Chemical Biology, McMaster University, Ontario, Canada
    Competing interests
    The authors declare that no competing interests exist.
  7. Gundeep Kaur

    Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Banumathi Sankaran

    Berkeley Center for Structural Biology, Lawrence Berkeley National Laboratory, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Kevin R MacKenzie

    Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, United States
    For correspondence
    kevin.mackenzie@bcm.edu
    Competing interests
    The authors declare that no competing interests exist.
  10. Giuseppe Melacini

    Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Canada
    Competing interests
    The authors declare that no competing interests exist.
  11. Darren E Casteel

    Department of Medicine, University of California, San Diego, San Diego, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7673-6597
  12. Fritz W Herberg

    Department of Biochemistry, University of Kassel, kassel, Germany
    Competing interests
    The authors declare that no competing interests exist.
  13. Choel W Kim

    Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, United States
    For correspondence
    ckim@bcm.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3152-0020

Funding

National Institute of General Medical Sciences (R01 GM090161)

  • Choel W Kim

Deutsche Forschungsgemeinschaft (He1818/10-1)

  • Fritz W Herberg

Federal Ministry of Education and Research, Germany (TargetRD,FKZ: 16GW0270)

  • Fritz W Herberg

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 1,286
    views
  • 327
    downloads
  • 3
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rajesh Sharma
  2. Jeong Joo Kim
  3. Liying Qin
  4. Philipp Henning
  5. Madoka Akimoto
  6. Bryan VanSchouwen
  7. Gundeep Kaur
  8. Banumathi Sankaran
  9. Kevin R MacKenzie
  10. Giuseppe Melacini
  11. Darren E Casteel
  12. Fritz W Herberg
  13. Choel W Kim
(2022)
An auto-inhibited state of protein kinase G and implications for selective activation
eLife 11:e79530.
https://doi.org/10.7554/eLife.79530

Share this article

https://doi.org/10.7554/eLife.79530

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Jie Luo, Jeff Ranish
    Tools and Resources

    Dynamic conformational and structural changes in proteins and protein complexes play a central and ubiquitous role in the regulation of protein function, yet it is very challenging to study these changes, especially for large protein complexes, under physiological conditions. Here, we introduce a novel isobaric crosslinker, Qlinker, for studying conformational and structural changes in proteins and protein complexes using quantitative crosslinking mass spectrometry. Qlinkers are small and simple, amine-reactive molecules with an optimal extended distance of ~10 Å, which use MS2 reporter ions for relative quantification of Qlinker-modified peptides derived from different samples. We synthesized the 2-plex Q2linker and showed that the Q2linker can provide quantitative crosslinking data that pinpoints key conformational and structural changes in biosensors, binary and ternary complexes composed of the general transcription factors TBP, TFIIA, and TFIIB, and RNA polymerase II complexes.

    1. Biochemistry and Chemical Biology
    2. Stem Cells and Regenerative Medicine
    Alejandro J Brenes, Eva Griesser ... Angus I Lamond
    Research Article

    Human induced pluripotent stem cells (hiPSCs) have great potential to be used as alternatives to embryonic stem cells (hESCs) in regenerative medicine and disease modelling. In this study, we characterise the proteomes of multiple hiPSC and hESC lines derived from independent donors and find that while they express a near-identical set of proteins, they show consistent quantitative differences in the abundance of a subset of proteins. hiPSCs have increased total protein content, while maintaining a comparable cell cycle profile to hESCs, with increased abundance of cytoplasmic and mitochondrial proteins required to sustain high growth rates, including nutrient transporters and metabolic proteins. Prominent changes detected in proteins involved in mitochondrial metabolism correlated with enhanced mitochondrial potential, shown using high-resolution respirometry. hiPSCs also produced higher levels of secreted proteins, including growth factors and proteins involved in the inhibition of the immune system. The data indicate that reprogramming of fibroblasts to hiPSCs produces important differences in cytoplasmic and mitochondrial proteins compared to hESCs, with consequences affecting growth and metabolism. This study improves our understanding of the molecular differences between hiPSCs and hESCs, with implications for potential risks and benefits for their use in future disease modelling and therapeutic applications.