An auto-inhibited state of protein kinase G and implications for selective activation

  1. Rajesh Sharma
  2. Jeong Joo Kim
  3. Liying Qin
  4. Philipp Henning
  5. Madoka Akimoto
  6. Bryan VanSchouwen
  7. Gundeep Kaur
  8. Banumathi Sankaran
  9. Kevin R MacKenzie  Is a corresponding author
  10. Giuseppe Melacini
  11. Darren E Casteel
  12. Fritz W Herberg
  13. Choel W Kim  Is a corresponding author
  1. Baylor College of Medicine, United States
  2. University of Kassel, Germany
  3. McMaster University, Canada
  4. Lawrence Berkeley National Laboratory, United States
  5. University of California, San Diego, United States

Abstract

Cyclic GMP-dependent protein kinases (PKGs) are key mediators of the nitric oxide/cGMP signaling pathway that regulates biological functions as diverse as smooth muscle contraction, cardiac function, and axon guidance. Understanding how cGMP differentially triggers mammalian PKG isoforms could lead to new therapeutics that inhibit or activate PKGs, complementing drugs that target nitric oxide synthases and cyclic nucleotide phosphodiesterases in this signaling axis. Alternate splicing of PRKG1 transcripts confers distinct leucine zippers, linkers, and auto-inhibitory pseudo-substrate sequences to PKG Iα and Iβ that result in isoform-specific activation properties, but the mechanism of enzyme auto-inhibition and its alleviation by cGMP is not well understood. Here we present a crystal structure of PKG Iβ in which the auto-inhibitory sequence and the cyclic nucleotide binding domains are bound to the catalytic domain, providing a snapshot of the auto-inhibited state. Specific contacts between the PKG Iβ auto-inhibitory sequence and the enzyme active site help explain isoform-specific activation constants and the effects of phosphorylation in the linker. We also present a crystal structure of a PKG I cyclic nucleotide binding domain with an activating mutation linked to Thoracic Aortic Aneurysms and Dissections. Similarity of this structure to wild type cGMP-bound domains and differences with the auto-inhibited enzyme provide a mechanistic basis for constitutive activation. We show that PKG Iβ auto-inhibition is mediated by contacts within each monomer of the native full-length dimeric protein, and using the available structural and biochemical data we develop a model for the regulation and cooperative activation of PKGs.

Data availability

Diffraction data have been deposited in PDB under the accession codes 7LV3 and 7MBJ.

The following data sets were generated

Article and author information

Author details

  1. Rajesh Sharma

    Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Jeong Joo Kim

    Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Liying Qin

    Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Philipp Henning

    Department of Biochemistry, University of Kassel, kassel, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Madoka Akimoto

    Department of Chemistry and Chemical Biology, McMaster University, Ontario, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. Bryan VanSchouwen

    Department of Chemistry and Chemical Biology, McMaster University, Ontario, Canada
    Competing interests
    The authors declare that no competing interests exist.
  7. Gundeep Kaur

    Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Banumathi Sankaran

    Berkeley Center for Structural Biology, Lawrence Berkeley National Laboratory, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Kevin R MacKenzie

    Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, United States
    For correspondence
    kevin.mackenzie@bcm.edu
    Competing interests
    The authors declare that no competing interests exist.
  10. Giuseppe Melacini

    Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Canada
    Competing interests
    The authors declare that no competing interests exist.
  11. Darren E Casteel

    Department of Medicine, University of California, San Diego, San Diego, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7673-6597
  12. Fritz W Herberg

    Department of Biochemistry, University of Kassel, kassel, Germany
    Competing interests
    The authors declare that no competing interests exist.
  13. Choel W Kim

    Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, United States
    For correspondence
    ckim@bcm.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3152-0020

Funding

National Institute of General Medical Sciences (R01 GM090161)

  • Choel W Kim

Deutsche Forschungsgemeinschaft (He1818/10-1)

  • Fritz W Herberg

Federal Ministry of Education and Research, Germany (TargetRD,FKZ: 16GW0270)

  • Fritz W Herberg

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Tony Hunter, Salk Institute for Biological Studies, United States

Version history

  1. Received: April 15, 2022
  2. Preprint posted: April 28, 2022 (view preprint)
  3. Accepted: August 4, 2022
  4. Accepted Manuscript published: August 5, 2022 (version 1)
  5. Version of Record published: August 26, 2022 (version 2)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 1,184
    views
  • 313
    downloads
  • 1
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rajesh Sharma
  2. Jeong Joo Kim
  3. Liying Qin
  4. Philipp Henning
  5. Madoka Akimoto
  6. Bryan VanSchouwen
  7. Gundeep Kaur
  8. Banumathi Sankaran
  9. Kevin R MacKenzie
  10. Giuseppe Melacini
  11. Darren E Casteel
  12. Fritz W Herberg
  13. Choel W Kim
(2022)
An auto-inhibited state of protein kinase G and implications for selective activation
eLife 11:e79530.
https://doi.org/10.7554/eLife.79530

Share this article

https://doi.org/10.7554/eLife.79530

Further reading

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Katarzyna Marta Zoltowska, Utpal Das ... Lucía Chávez-Gutiérrez
    Research Article

    Amyloid β (Aβ) peptides accumulating in the brain are proposed to trigger Alzheimer’s disease (AD). However, molecular cascades underlying their toxicity are poorly defined. Here, we explored a novel hypothesis for Aβ42 toxicity that arises from its proven affinity for γ-secretases. We hypothesized that the reported increases in Aβ42, particularly in the endolysosomal compartment, promote the establishment of a product feedback inhibitory mechanism on γ-secretases, and thereby impair downstream signaling events. We conducted kinetic analyses of γ-secretase activity in cell-free systems in the presence of Aβ, as well as cell-based and ex vivo assays in neuronal cell lines, neurons, and brain synaptosomes to assess the impact of Aβ on γ-secretases. We show that human Aβ42 peptides, but neither murine Aβ42 nor human Aβ17–42 (p3), inhibit γ-secretases and trigger accumulation of unprocessed substrates in neurons, including C-terminal fragments (CTFs) of APP, p75, and pan-cadherin. Moreover, Aβ42 treatment dysregulated cellular homeostasis, as shown by the induction of p75-dependent neuronal death in two distinct cellular systems. Our findings raise the possibility that pathological elevations in Aβ42 contribute to cellular toxicity via the γ-secretase inhibition, and provide a novel conceptual framework to address Aβ toxicity in the context of γ-secretase-dependent homeostatic signaling.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Ya-Juan Wang, Xiao-Jing Di ... Ting-Wei Mu
    Research Article Updated

    Protein homeostasis (proteostasis) deficiency is an important contributing factor to neurological and metabolic diseases. However, how the proteostasis network orchestrates the folding and assembly of multi-subunit membrane proteins is poorly understood. Previous proteomics studies identified Hsp47 (Gene: SERPINH1), a heat shock protein in the endoplasmic reticulum lumen, as the most enriched interacting chaperone for gamma-aminobutyric acid type A (GABAA) receptors. Here, we show that Hsp47 enhances the functional surface expression of GABAA receptors in rat neurons and human HEK293T cells. Furthermore, molecular mechanism study demonstrates that Hsp47 acts after BiP (Gene: HSPA5) and preferentially binds the folded conformation of GABAA receptors without inducing the unfolded protein response in HEK293T cells. Therefore, Hsp47 promotes the subunit-subunit interaction, the receptor assembly process, and the anterograde trafficking of GABAA receptors. Overexpressing Hsp47 is sufficient to correct the surface expression and function of epilepsy-associated GABAA receptor variants in HEK293T cells. Hsp47 also promotes the surface trafficking of other Cys-loop receptors, including nicotinic acetylcholine receptors and serotonin type 3 receptors in HEK293T cells. Therefore, in addition to its known function as a collagen chaperone, this work establishes that Hsp47 plays a critical and general role in the maturation of multi-subunit Cys-loop neuroreceptors.