The ellipse of insignificance, a refined fragility index for ascertaining robustness of results in dichotomous outcome trials

  1. David Robert Grimes  Is a corresponding author
  1. School of Physical Sciences, Dublin City University, Ireland
  2. Discipline of Radiation Therapy, Trinity College Dublin, Ireland
4 figures, 4 tables and 2 additional files

Figures

Ellipse of insignificance example.

(a) An example ellipse of insignificance for the a=50, b=50, c=10, d=90 at a significance level of α=0.05. All points bounded by the ellipse depict (x,y) combinations which would not lead to the null being rejected. (b) Relevant vectors for ascertaining misconding thresholds. In this example, the Fewest Experimental/Control Knowingly Uncoded Participants (FECKUP) point is (xe,ye)=(12.8,14.4), fmin=19.3, and (xi,yi)=(30.1,26.3). See text for details.

Application of ellipse of insignificance analysis to existent data.

(a) Ellipses of insignificance analysis for a published study (n = 913) for illustrative example 1 of published data. The shaded region denotes the ellipse of insignificance, the red line shows the Fewest Experimental/Control Knowingly Uncoded Participants (FECKUP) vector (the minimum vector from the origin to the ellipse).

Illustrative example 2.

(a) Ellipses of insignificance analysis for two studies with same χ2 statistic. (b) Fewest Experimental/Control Knowingly Uncoded Participants (FECKUP) vectors for both studies. Experiment 1 is given by orange ellipse and red dotted line, Experiment 2 by the blue ellipse and dotted line.

Illustrative example 3.

An ellipse of insignificance (EOI) analysis on the data supplied in the City A/City B screening comparison yields a Fewest Experimental/Control Knowingly Uncoded Participants (FECKUP) vector (in red) of 46.2 subjects, corresponding to a minimum tolerance of 66.5 total subjects after resolving the vector.

As xi=73.7 (shown in green) with yi=62.7 (shown in blue), but as the sensitivity and specificity of the tests used in City A are known, it can be shown that xm93, exceeding the limits of xi, placing the point within the ellipse and rendering any seeming significance void. Note that only a part of the EOI (denoted by the blue solid shape) is shown for clarity.

Tables

Table 1
Reported groups and related variables.
Endpoint positiveEndpoint negative
Experimental groupa-xb+x
Control groupc+yd-y
Table 2
Ellipse of insignificance (EOI) derived metrics for published data.
EOI statistic (α=0.05)Derived value
Experimental group tolerance xi6.9 subjects
Control group tolerance yi1.9 subjects
FECKUP vector length1.9 subjects
Tolerance threshold for error (experimental group)ϵE0.99%
Tolerance threshold for error (control group)ϵC0.89%
Absolute tolerance threshold for error (all subjects)ϵA0.22%
Table 3
Experimental metrics for similar test statistics.
Significance levelDataϵEϵCϵA
α=0.05Experiment 117.7%18.2%8.9%
Experiment 211%9.5%5.0%
α=0.01Experiment 116.3%17.0%8.3%
Experiment 210.4%8.6%4.6%
α=0.001Experiment 114.8%15.5%7.5%
Experiment 29.8%7.6%4.1%
α=0.0001Experiment 113.5%14.3%6.9%
Experiment 29.2%6.8%3.8%
Table 4
Results of different analysis.
CIN2 + positiveNo CIN2 + detectedMethodology
City A (measured)113887LBC only
City B (measured)24976HPV screening/LBC reflex
True values (both cities)20980N/A

Additional files

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. David Robert Grimes
(2022)
The ellipse of insignificance, a refined fragility index for ascertaining robustness of results in dichotomous outcome trials
eLife 11:e79573.
https://doi.org/10.7554/eLife.79573