Notch signaling functions in noncanonical juxtacrine manner in platelets to amplify thrombogenicity

Abstract

Background: Notch signaling dictates cell fate decisions in mammalian cells including megakaryocytes. Existence of functional Notch signaling in enucleate platelets remains elusive.

Methods: Transcripts/peptides of Notch1 and Delta-like ligand (DLL)-4 were detected in platelets isolated from human blood by RT-qPCR, Western analysis and flow cytometry. Platelet aggregation, granule secretion and platelet-leucocyte interaction were analyzed by lumi-aggregometry and flow cytometry. Platelet-derived extracellular vesicles were documented with Nanoparticle Tracking Analyzer. Platelet thrombus on immobilized collagen was quantified using microfluidics platform. Intracellular calcium was monitored by fluorescence spectrophotometry. Whole blood coagulation was studied by thromboelastography. Ferric chloride-induced mouse mesenteric arteriolar thrombosis was imaged by intravital microscopy.

Results: We demonstrate expression of Notch1, its ligand DLL-4 and their respective transcripts in human platelets. Synthesis and surface translocation of Notch1 and DLL-4 were upregulated by thrombin. DLL-4, in turn, instigated neighbouring platelets to switch to 'activated' phenotype through cleavage of Notch receptor and release of its intracellular domain (NICD), which was averted by inhibition of γ-secretase and phosphatidylinositol-3-kinase (PI3K). Inhibition of Notch signaling, too, restrained agonist-induced platelet activation, and significantly impaired arterial thrombosis in mice. Strikingly, prevention of DLL-4-Notch1 interaction by a blocking antibody abolished platelet aggregation and extracellular vesicle shedding induced by thrombin.

Conclusions: Our study presents compelling evidence in support of non-canonical juxtacrine Notch signaling within platelet aggregates that synergizes with physiological agonists to generate occlusive intramural thrombi. Thus, Notch pathway can be a potential anti-platelet/anti-thrombotic therapeutic target.

Funding: Research was supported by grants received by DD from JC Bose Fellowship (JCB/2017/000029), ICMR (71/4/2018-BMS/CAR), DBT (BT/PR-20645/BRB/10/1541/2016) and SERB (EMR/2015/000583). SNC, ME and VS are recipients of ICMR-Scientist-C, CSIR-SRF and UGC-SRF support, respectively. Funders had no role in design, analysis and reporting of study.

Data availability

All the data are available in the main text or the supporting information. Source Data file have been provided for each figure included either in the manuscript or supplemental data.

Article and author information

Author details

  1. Susheel N Chaurasia

    Department of Biochemistry, Banaras Hindu University, Varanasi, India
    Competing interests
    The authors declare that no competing interests exist.
  2. Mohammad Ekhlak

    Department of Biochemistry, Banaras Hindu University, Varanasi, India
    Competing interests
    The authors declare that no competing interests exist.
  3. Geeta Kushwaha

    Department of Biochemistry, Banaras Hindu University, Varanasi, India
    Competing interests
    The authors declare that no competing interests exist.
  4. Vipin Singh

    Department of Biochemistry, Banaras Hindu University, Varanasi, India
    Competing interests
    The authors declare that no competing interests exist.
  5. Ram L Mallick

    Department of Biochemistry, Banaras Hindu University, Varanasi, India
    Competing interests
    The authors declare that no competing interests exist.
  6. Debabrata Dash

    Department of Biochemistry, Banaras Hindu University, Varanasi, India
    For correspondence
    ddash.biochem@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7291-2453

Funding

J. C. Bose National Fellowship (JCB/2017/000029)

  • Debabrata Dash

Indian Council of Medical Research under CAR (71/4/2018-BMS/CAR)

  • Debabrata Dash

Department of Biotechnology (BT/PR-20645/BRB/10/1541/2016)

  • Debabrata Dash

Science and Engineering Research Board (EMR/2015/000583)

  • Debabrata Dash

ICMR-Scientist-C

  • Susheel N Chaurasia

CSIR-SRF

  • Mohammad Ekhlak

UGC-SRF

  • Vipin Singh

Assistance from the Humboldt Foundation, Germany

  • Debabrata Dash

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Robert Baiocchi, The Ohio State University, United States

Ethics

Animal experimentation: The animal study was ethically approved by the Central Animal Ethical Committee of Institute of Medical Sciences, Banaras Hindu University (Approval No. Dean/2017/CAEC/83). All efforts were made to minimize the number of animals used, and their suffering.

Human subjects: Blood samples were drawn from healthy adult human participants after obtaining written informed consent, strictly as per recommendations and as approved by the Institutional Ethical Committee of the Institute of Medical Sciences, Banaras Hindu University (Approval No. Dean/2015-16/EC/76).

Version history

  1. Received: April 19, 2022
  2. Preprint posted: May 6, 2022 (view preprint)
  3. Accepted: September 30, 2022
  4. Accepted Manuscript published: October 3, 2022 (version 1)
  5. Version of Record published: November 2, 2022 (version 2)

Copyright

© 2022, Chaurasia et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 783
    views
  • 161
    downloads
  • 6
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Susheel N Chaurasia
  2. Mohammad Ekhlak
  3. Geeta Kushwaha
  4. Vipin Singh
  5. Ram L Mallick
  6. Debabrata Dash
(2022)
Notch signaling functions in noncanonical juxtacrine manner in platelets to amplify thrombogenicity
eLife 11:e79590.
https://doi.org/10.7554/eLife.79590

Share this article

https://doi.org/10.7554/eLife.79590

Further reading

    1. Cell Biology
    Wan-ping Yang, Mei-qi Li ... Qian-qian Luo
    Research Article

    High-altitude polycythemia (HAPC) affects individuals living at high altitudes, characterized by increased red blood cells (RBCs) production in response to hypoxic conditions. The exact mechanisms behind HAPC are not fully understood. We utilized a mouse model exposed to hypobaric hypoxia (HH), replicating the environmental conditions experienced at 6000 m above sea level, coupled with in vitro analysis of primary splenic macrophages under 1% O2 to investigate these mechanisms. Our findings indicate that HH significantly boosts erythropoiesis, leading to erythrocytosis and splenic changes, including initial contraction to splenomegaly over 14 days. A notable decrease in red pulp macrophages (RPMs) in the spleen, essential for RBCs processing, was observed, correlating with increased iron release and signs of ferroptosis. Prolonged exposure to hypoxia further exacerbated these effects, mirrored in human peripheral blood mononuclear cells. Single-cell sequencing showed a marked reduction in macrophage populations, affecting the spleen’s ability to clear RBCs and contributing to splenomegaly. Our findings suggest splenic ferroptosis contributes to decreased RPMs, affecting erythrophagocytosis and potentially fostering continuous RBCs production in HAPC. These insights could guide the development of targeted therapies for HAPC, emphasizing the importance of splenic macrophages in disease pathology.

    1. Cell Biology
    Jurgen Denecke
    Insight

    Mapping proteins in and associated with the Golgi apparatus reveals how this cellular compartment emerges in budding yeast and progresses over time.