Non-coding RNAs in drug and radiation resistance of bone and soft tissue sarcoma: a systematic review

  1. Huan-Huan Chen
  2. Tie-Ning Zhang
  3. Fang-Yuan Zhang  Is a corresponding author
  4. Tao Zhang  Is a corresponding author
  1. China Medical University, China

Abstract

Background: Sarcomas comprise approximately 1% of all human malignancies; treatment resistance is one of the major reasons for the poor prognosis of sarcomas. Accumulating evidence suggests that non-coding RNAs, including microRNAs, long non-coding RNAs, and circular RNAs, are important molecules involved in the crosstalk between resistance to chemotherapy, targeted therapy, and radiotherapy via various pathways.

Methods: We searched the PubMed (MEDLINE) database for articles regarding sarcoma-associated non-coding RNAs from inception to August17, 2022. Studies investigating the roles of host-derived microRNAs, long non-coding RNAs, and circular RNAs in sarcoma were included. Data regarding the roles of ncRNAs in therapeutic regulation and their applicability as biomarkers for predicting therapeutic response of sarcomas were extracted. Two independent researchers assessed the quality of the studies using Würzburg Methodological Quality Score(W-MeQS).

Results: Observational studies revealed ectopic expression of non-coding RNAs in sarcoma patients with different responses to antitumor treatments. Experimental studies have confirmed crosstalk between cellular pathways pertinent to chemotherapy, targeted therapy, and radiotherapy resistance. Of the included studies, W-MeQS scores ranged from 3 to 10 (average score = 5.42). Of the twelve articles that investigated non-coding RNAs as biomarkers, none included a validation cohort. Selective reporting of the sensitivity, specificity, and receiver operating curves was common.

Conclusion: Although non-coding RNAs appear to be good candidates as biomarkers for predicting treatment response and therapeutics for sarcoma, their differential expression across tissues complicates their application. Further research regarding their potential for inhibiting or activating these regulatory molecules to reverse treatment resistance may be useful.

Funding: This study's literature retrieval cost was supported by the 345 Talent Project of Shengjing Hospital of China Medical University(M0949 to Tao Zhang).

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file. The data has also been deposited to Dryad

The following data sets were generated
    1. Zhang T
    2. Chen H
    3. Zhang T
    4. Zhang F
    (2022) 212 orginal articles
    Dryad Digital Repository, doi:10.5061/dryad.kd51c5b8t.

Article and author information

Author details

  1. Huan-Huan Chen

    Department of Oncology, China Medical University, Shenyang, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Tie-Ning Zhang

    Department of Pediatrics, China Medical University, Shenyang, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Fang-Yuan Zhang

    Department of General Surgery, China Medical University, Shenyang, China
    For correspondence
    fyzhang@cmu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
  4. Tao Zhang

    Department of Pediatrics, China Medical University, Shenyang, China
    For correspondence
    zhangtaocmu7@126.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5341-8249

Funding

345 Talent of Shengjing Hospital of China Medical University

  • Tao Zhang

The funder supported the data collection for the study.

Copyright

© 2022, Chen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 503
    views
  • 73
    downloads
  • 4
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Huan-Huan Chen
  2. Tie-Ning Zhang
  3. Fang-Yuan Zhang
  4. Tao Zhang
(2022)
Non-coding RNAs in drug and radiation resistance of bone and soft tissue sarcoma: a systematic review
eLife 11:e79655.
https://doi.org/10.7554/eLife.79655

Share this article

https://doi.org/10.7554/eLife.79655

Further reading

    1. Cancer Biology
    Ismail M Meraz, Mourad Majidi ... Jack A Roth
    Research Article

    Expression of NPRL2/TUSC4, a tumor-suppressor gene, is reduced in many cancers including NSCLC. Restoration of NPRL2 induces DNA damage, apoptosis, and cell-cycle arrest. We investigated NPRL2 antitumor immune responses in aPD1R/KRAS/STK11mt NSCLC in humanized-mice. Humanized-mice were generated by transplanting fresh human cord blood-derived CD34 stem cells into sub-lethally irradiated NSG mice. Lung-metastases were developed from KRAS/STK11mt/aPD1R A549 cells and treated with NPRL2 w/wo pembrolizumab. NPRL2-treatment reduced lung metastases significantly, whereas pembrolizumab was ineffective. Antitumor effect was greater in humanized than non-humanized-mice. NPRL2 + pembrolizumab was not synergistic in KRAS/STK11mt/aPD1R tumors but was synergistic in KRASwt/aPD1S H1299. NPRL2 also showed a significant antitumor effect on KRASmt/aPD1R LLC2 syngeneic-tumors. The antitumor effect was correlated with increased infiltration of human cytotoxic-T, HLA-DR+DC, CD11c+DC, and downregulation of myeloid and regulatory-T cells in TME. Antitumor effect was abolished upon in-vivo depletion of CD8-T, macrophages, and CD4-T cells whereas remained unaffected upon NK-cell depletion. A distinctive protein-expression profile was found after NPRL2 treatment. IFNγ, CD8b, and TBX21 associated with T-cell functions were significantly increased, whereas FOXP3, TGFB1/B2, and IL-10RA were strongly inhibited by NPRL2. A list of T-cell co-inhibitory molecules was also downregulated. Restoration of NPRL2 exhibited significantly slower tumor growth in humanized-mice, which was associated with increased presence of human cytotoxic-T, and DC and decreased percentage of Treg, MDSC, and TAM in TME. NPRL2-stable cells showed a substantial increase in colony-formation inhibition and heightened sensitivity to carboplatin. Stable-expression of NPRL2 resulted in the downregulation of MAPK and AKT-mTOR signaling. Taken-together, NPRL2 gene-therapy induces antitumor activity on KRAS/STK11mt/aPD1R tumors through DC-mediated antigen-presentation and cytotoxic immune-cell activation.

    1. Biochemistry and Chemical Biology
    2. Cancer Biology
    Flavie Coquel, Sing-Zong Ho ... Philippe Pasero
    Research Article

    Cancer cells display high levels of oncogene-induced replication stress (RS) and rely on DNA damage checkpoint for viability. This feature is exploited by cancer therapies to either increase RS to unbearable levels or inhibit checkpoint kinases involved in the DNA damage response. Thus far, treatments that combine these two strategies have shown promise but also have severe adverse effects. To identify novel, better-tolerated anticancer combinations, we screened a collection of plant extracts and found two natural compounds from the plant, Psoralea corylifolia, that synergistically inhibit cancer cell proliferation. Bakuchiol inhibited DNA replication and activated the checkpoint kinase CHK1 by targeting DNA polymerases. Isobavachalcone interfered with DNA double-strand break repair by inhibiting the checkpoint kinase CHK2 and DNA end resection. The combination of bakuchiol and isobavachalcone synergistically inhibited cancer cell proliferation in vitro. Importantly, it also prevented tumor development in xenografted NOD/SCID mice. The synergistic effect of inhibiting DNA replication and CHK2 signaling identifies a vulnerability of cancer cells that might be exploited by using clinically approved inhibitors in novel combination therapies.