Non-coding RNAs in drug and radiation resistance of bone and soft tissue sarcoma: a systematic review

  1. Huan-Huan Chen
  2. Tie-Ning Zhang
  3. Fang-Yuan Zhang  Is a corresponding author
  4. Tao Zhang  Is a corresponding author
  1. China Medical University, China

Abstract

Background: Sarcomas comprise approximately 1% of all human malignancies; treatment resistance is one of the major reasons for the poor prognosis of sarcomas. Accumulating evidence suggests that non-coding RNAs, including microRNAs, long non-coding RNAs, and circular RNAs, are important molecules involved in the crosstalk between resistance to chemotherapy, targeted therapy, and radiotherapy via various pathways.

Methods: We searched the PubMed (MEDLINE) database for articles regarding sarcoma-associated non-coding RNAs from inception to August17, 2022. Studies investigating the roles of host-derived microRNAs, long non-coding RNAs, and circular RNAs in sarcoma were included. Data regarding the roles of ncRNAs in therapeutic regulation and their applicability as biomarkers for predicting therapeutic response of sarcomas were extracted. Two independent researchers assessed the quality of the studies using Würzburg Methodological Quality Score(W-MeQS).

Results: Observational studies revealed ectopic expression of non-coding RNAs in sarcoma patients with different responses to antitumor treatments. Experimental studies have confirmed crosstalk between cellular pathways pertinent to chemotherapy, targeted therapy, and radiotherapy resistance. Of the included studies, W-MeQS scores ranged from 3 to 10 (average score = 5.42). Of the twelve articles that investigated non-coding RNAs as biomarkers, none included a validation cohort. Selective reporting of the sensitivity, specificity, and receiver operating curves was common.

Conclusion: Although non-coding RNAs appear to be good candidates as biomarkers for predicting treatment response and therapeutics for sarcoma, their differential expression across tissues complicates their application. Further research regarding their potential for inhibiting or activating these regulatory molecules to reverse treatment resistance may be useful.

Funding: This study's literature retrieval cost was supported by the 345 Talent Project of Shengjing Hospital of China Medical University(M0949 to Tao Zhang).

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file. The data has also been deposited to Dryad

The following data sets were generated
    1. Zhang T
    2. Chen H
    3. Zhang T
    4. Zhang F
    (2022) 212 orginal articles
    Dryad Digital Repository, doi:10.5061/dryad.kd51c5b8t.

Article and author information

Author details

  1. Huan-Huan Chen

    Department of Oncology, China Medical University, Shenyang, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Tie-Ning Zhang

    Department of Pediatrics, China Medical University, Shenyang, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Fang-Yuan Zhang

    Department of General Surgery, China Medical University, Shenyang, China
    For correspondence
    fyzhang@cmu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
  4. Tao Zhang

    Department of Pediatrics, China Medical University, Shenyang, China
    For correspondence
    zhangtaocmu7@126.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5341-8249

Funding

345 Talent of Shengjing Hospital of China Medical University

  • Tao Zhang

The funder supported the data collection for the study.

Reviewing Editor

  1. Renata Pasqualini, Rutgers University, United States

Version history

  1. Preprint posted: April 7, 2022 (view preprint)
  2. Received: April 21, 2022
  3. Accepted: November 2, 2022
  4. Accepted Manuscript published: November 3, 2022 (version 1)
  5. Version of Record published: November 24, 2022 (version 2)

Copyright

© 2022, Chen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 429
    views
  • 65
    downloads
  • 1
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Huan-Huan Chen
  2. Tie-Ning Zhang
  3. Fang-Yuan Zhang
  4. Tao Zhang
(2022)
Non-coding RNAs in drug and radiation resistance of bone and soft tissue sarcoma: a systematic review
eLife 11:e79655.
https://doi.org/10.7554/eLife.79655

Share this article

https://doi.org/10.7554/eLife.79655

Further reading

    1. Cancer Biology
    Sin-Wei Huang, See-Khai Lim ... Kurt Yun Mou
    Research Article

    Certain bacteria demonstrate the ability to target and colonize the tumor microenvironment, a characteristic that positions them as innovative carriers for delivering various therapeutic agents in cancer therapy. Nevertheless, our understanding of how bacteria adapt their physiological condition to the tumor microenvironment remains elusive. In this work, we employed liquid chromatography-tandem mass spectrometry to examine the proteome of E. coli colonized in murine tumors. Compared to E. coli cultivated in the rich medium, we found that E. coli colonized in tumors notably upregulated the processes related to ferric ions, including the enterobactin biosynthesis and iron homeostasis. This finding indicated that the tumor is an iron-deficient environment to E. coli. We also found that the colonization of E. coli in the tumor led to an increased expression of lipocalin 2 (LCN2), a host protein that can sequester the enterobactin. We therefore engineered E. coli in order to evade the nutritional immunity provided by LCN2. By introducing the IroA cluster, the E. coli synthesizes the glycosylated enterobactin, which creates steric hindrance to avoid the LCN2 sequestration. The IroA-E. coli showed enhanced resistance to LCN2 and significantly improved the anti-tumor activity in mice. Moreover, the mice cured by the IroA-E. coli treatment became resistant to the tumor re-challenge, indicating the establishment of immunological memory. Overall, our study underscores the crucial role of bacteria’s ability to acquire ferric ions within the tumor microenvironment for effective cancer therapy.

    1. Cancer Biology
    2. Cell Biology
    Stefanie Schmieder
    Insight

    Mutations in the gene for β-catenin cause liver cancer cells to release fewer exosomes, which reduces the number of immune cells infiltrating the tumor.