The Nse5/6-like SIMC1-SLF2 complex localizes SMC5/6 to viral replication centers

  1. Martina Oravcová
  2. Minghua Nie
  3. Nicola Zilio
  4. Shintaro Maeda
  5. Yasaman Jami-Alahmadi
  6. Eros Lazzerini-Denchi
  7. James A Wohlschlegel
  8. Helle D Ulrich
  9. Takanori Otomo
  10. Michael Boddy  Is a corresponding author
  1. Scripps Research Institute, United States
  2. Institute of Molecular Biology, Germany
  3. University of California, Los Angeles, United States
  4. National Cancer Institute, United States

Abstract

The human SMC5/6 complex is a conserved guardian of genome stability and an emerging component of antiviral responses. These disparate functions likely require distinct mechanisms of SMC5/6 regulation. In yeast, Smc5/6 is regulated by its Nse5/6 subunits, but such regulatory subunits for human SMC5/6 are poorly defined. Here, we identify a novel SMC5/6 subunit called SIMC1 that contains SUMO interacting motifs (SIMs) and an Nse5-like domain. We isolated SIMC1 from the proteomic environment of SMC5/6 within polyomavirus large T antigen (LT)-induced subnuclear compartments. SIMC1 uses its SIMs and Nse5-like domain to localize SMC5/6 to polyomavirus replication centers (PyVRCs) at SUMO-rich PML nuclear bodies. SIMC1's Nse5-like domain binds to the putative Nse6 orthologue SLF2 to form an anti-parallel helical dimer resembling the yeast Nse5/6 structure. SIMC1-SLF2 structure-based mutagenesis defines a conserved surface region containing the N-terminus of SIMC1's helical domain that regulates SMC5/6 localization to PyVRCs. Furthermore, SLF1, which recruits SMC5/6 to DNA lesions via its BRCT and ARD motifs, binds SLF2 analogously to SIMC1 and forms a separate Nse5/6-like complex. Thus, two Nse5/6-like complexes with distinct recruitment domains control human SMC5/6 localization.

Data availability

The SMC5 and SIMC1 BioID datasets have been deposited to the PRIDE database (85) as follows: Protein interaction AP-MS data: PRIDE PXD033923. Cryo-EM density map and atomic coordinates of the SIMC1-SLF2 complex have been deposited to the Electron Microscopy Data Bank and wwPDB, respectively, under accession codes EMD-25706 and PDB 7T5P.

The following data sets were generated

Article and author information

Author details

  1. Martina Oravcová

    Department of Molecular Medicine, Scripps Research Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Minghua Nie

    Department of Molecular Medicine, Scripps Research Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Nicola Zilio

    Institute of Molecular Biology, Mainz, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Shintaro Maeda

    Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Yasaman Jami-Alahmadi

    Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Eros Lazzerini-Denchi

    Laboratory of Genome Integrity, National Cancer Institute, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. James A Wohlschlegel

    Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Helle D Ulrich

    Institute of Molecular Biology, Mainz, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Takanori Otomo

    Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3589-238X
  10. Michael Boddy

    Department of Molecular Medicine, Scripps Research Institute, La Jolla, United States
    For correspondence
    nboddy@scripps.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7618-4449

Funding

National Institute of General Medical Sciences (GM136273)

  • Michael Boddy

National Institute of General Medical Sciences (GM089788)

  • James A Wohlschlegel

National Institute of General Medical Sciences (GM092740)

  • Takanori Otomo

Deutsche Forschungsgemeinschaft (393547839 - SFB 1361,sub-project 07)

  • Helle D Ulrich

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Irene E Chiolo, University of Southern California, United States

Version history

  1. Received: April 22, 2022
  2. Preprint posted: May 19, 2022 (view preprint)
  3. Accepted: November 9, 2022
  4. Accepted Manuscript published: November 14, 2022 (version 1)
  5. Version of Record published: November 29, 2022 (version 2)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 1,304
    Page views
  • 202
    Downloads
  • 5
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Martina Oravcová
  2. Minghua Nie
  3. Nicola Zilio
  4. Shintaro Maeda
  5. Yasaman Jami-Alahmadi
  6. Eros Lazzerini-Denchi
  7. James A Wohlschlegel
  8. Helle D Ulrich
  9. Takanori Otomo
  10. Michael Boddy
(2022)
The Nse5/6-like SIMC1-SLF2 complex localizes SMC5/6 to viral replication centers
eLife 11:e79676.
https://doi.org/10.7554/eLife.79676

Further reading

    1. Cell Biology
    Herschel S Dhekne, Francesca Tonelli ... Suzanne R Pfeffer
    Research Advance Updated

    Activating mutations in the leucine-rich repeat kinase 2 (LRRK2) cause Parkinson’s disease. LRRK2 phosphorylates a subset of Rab GTPases, particularly Rab10 and Rab8A, and we showed previously that these phosphoRabs play an important role in LRRK2 membrane recruitment and activation (Vides et al., 2022). To learn more about LRRK2 pathway regulation, we carried out an unbiased, CRISPR-based genome-wide screen to identify modifiers of cellular phosphoRab10 levels. A flow cytometry assay was developed to detect changes in phosphoRab10 levels in pools of mouse NIH-3T3 cells harboring unique CRISPR guide sequences. Multiple negative and positive regulators were identified; surprisingly, knockout of the Rab12 gene was especially effective in decreasing phosphoRab10 levels in multiple cell types and knockout mouse tissues. Rab-driven increases in phosphoRab10 were specific for Rab12, LRRK2-dependent and PPM1H phosphatase-reversible, and did not require Rab12 phosphorylation; they were seen with wild type and pathogenic G2019S and R1441C LRRK2. As expected for a protein that regulates LRRK2 activity, Rab12 also influenced primary cilia formation. AlphaFold modeling revealed a novel Rab12 binding site in the LRRK2 Armadillo domain, and we show that residues predicted to be essential for Rab12 interaction at this site influence phosphoRab10 and phosphoRab12 levels in a manner distinct from Rab29 activation of LRRK2. Our data show that Rab12 binding to a new site in the LRRK2 Armadillo domain activates LRRK2 kinase for Rab phosphorylation and could serve as a new therapeutic target for a novel class of LRRK2 inhibitors that do not target the kinase domain.

    1. Cell Biology
    Ling-Yun Zhou, Chen-Xi Jin ... Hao Wu
    Research Article Updated

    The MRTF–SRF pathway has been extensively studied for its crucial role in driving the expression of a large number of genes involved in actin cytoskeleton of various cell types. However, the specific contribution of MRTF–SRF in hair cells remains unknown. In this study, we showed that hair cell-specific deletion of Srf or Mrtfb, but not Mrtfa, leads to similar defects in the development of stereocilia dimensions and the maintenance of cuticular plate integrity. We used fluorescence-activated cell sorting-based hair cell RNA-Seq analysis to investigate the mechanistic underpinnings of the changes observed in Srf and Mrtfb mutants, respectively. Interestingly, the transcriptome analysis revealed distinct profiles of genes regulated by Srf and Mrtfb, suggesting different transcriptional regulation mechanisms of actin cytoskeleton activities mediated by Srf and Mrtfb. Exogenous delivery of calponin 2 using Adeno-associated virus transduction in Srf mutants partially rescued the impairments of stereocilia dimensions and the F-actin intensity of cuticular plate, suggesting the involvement of Cnn2, as an Srf downstream target, in regulating the hair bundle morphology and cuticular plate actin cytoskeleton organization. Our study uncovers, for the first time, the unexpected differential transcriptional regulation of actin cytoskeleton mediated by Srf and Mrtfb in hair cells, and also demonstrates the critical role of SRF–CNN2 in modulating actin dynamics of the stereocilia and cuticular plate, providing new insights into the molecular mechanism underlying hair cell development and maintenance.