The Nse5/6-like SIMC1-SLF2 complex localizes SMC5/6 to viral replication centers

  1. Martina Oravcová
  2. Minghua Nie
  3. Nicola Zilio
  4. Shintaro Maeda
  5. Yasaman Jami-Alahmadi
  6. Eros Lazzerini-Denchi
  7. James A Wohlschlegel
  8. Helle D Ulrich
  9. Takanori Otomo
  10. Michael Boddy  Is a corresponding author
  1. Scripps Research Institute, United States
  2. Institute of Molecular Biology, Germany
  3. University of California, Los Angeles, United States
  4. National Cancer Institute, United States

Abstract

The human SMC5/6 complex is a conserved guardian of genome stability and an emerging component of antiviral responses. These disparate functions likely require distinct mechanisms of SMC5/6 regulation. In yeast, Smc5/6 is regulated by its Nse5/6 subunits, but such regulatory subunits for human SMC5/6 are poorly defined. Here, we identify a novel SMC5/6 subunit called SIMC1 that contains SUMO interacting motifs (SIMs) and an Nse5-like domain. We isolated SIMC1 from the proteomic environment of SMC5/6 within polyomavirus large T antigen (LT)-induced subnuclear compartments. SIMC1 uses its SIMs and Nse5-like domain to localize SMC5/6 to polyomavirus replication centers (PyVRCs) at SUMO-rich PML nuclear bodies. SIMC1's Nse5-like domain binds to the putative Nse6 orthologue SLF2 to form an anti-parallel helical dimer resembling the yeast Nse5/6 structure. SIMC1-SLF2 structure-based mutagenesis defines a conserved surface region containing the N-terminus of SIMC1's helical domain that regulates SMC5/6 localization to PyVRCs. Furthermore, SLF1, which recruits SMC5/6 to DNA lesions via its BRCT and ARD motifs, binds SLF2 analogously to SIMC1 and forms a separate Nse5/6-like complex. Thus, two Nse5/6-like complexes with distinct recruitment domains control human SMC5/6 localization.

Data availability

The SMC5 and SIMC1 BioID datasets have been deposited to the PRIDE database (85) as follows: Protein interaction AP-MS data: PRIDE PXD033923. Cryo-EM density map and atomic coordinates of the SIMC1-SLF2 complex have been deposited to the Electron Microscopy Data Bank and wwPDB, respectively, under accession codes EMD-25706 and PDB 7T5P.

The following data sets were generated

Article and author information

Author details

  1. Martina Oravcová

    Department of Molecular Medicine, Scripps Research Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Minghua Nie

    Department of Molecular Medicine, Scripps Research Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Nicola Zilio

    Institute of Molecular Biology, Mainz, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Shintaro Maeda

    Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Yasaman Jami-Alahmadi

    Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Eros Lazzerini-Denchi

    Laboratory of Genome Integrity, National Cancer Institute, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. James A Wohlschlegel

    Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Helle D Ulrich

    Institute of Molecular Biology, Mainz, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Takanori Otomo

    Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3589-238X
  10. Michael Boddy

    Department of Molecular Medicine, Scripps Research Institute, La Jolla, United States
    For correspondence
    nboddy@scripps.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7618-4449

Funding

National Institute of General Medical Sciences (GM136273)

  • Michael Boddy

National Institute of General Medical Sciences (GM089788)

  • James A Wohlschlegel

National Institute of General Medical Sciences (GM092740)

  • Takanori Otomo

Deutsche Forschungsgemeinschaft (393547839 - SFB 1361,sub-project 07)

  • Helle D Ulrich

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 2,215
    views
  • 306
    downloads
  • 18
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Martina Oravcová
  2. Minghua Nie
  3. Nicola Zilio
  4. Shintaro Maeda
  5. Yasaman Jami-Alahmadi
  6. Eros Lazzerini-Denchi
  7. James A Wohlschlegel
  8. Helle D Ulrich
  9. Takanori Otomo
  10. Michael Boddy
(2022)
The Nse5/6-like SIMC1-SLF2 complex localizes SMC5/6 to viral replication centers
eLife 11:e79676.
https://doi.org/10.7554/eLife.79676

Share this article

https://doi.org/10.7554/eLife.79676

Further reading

    1. Cell Biology
    Affiong Ika Oqua, Kin Chao ... Alejandra Tomas
    Research Article

    G protein-coupled receptors (GPCRs) are integral membrane proteins which closely interact with their plasma membrane lipid microenvironment. Cholesterol is a lipid enriched at the plasma membrane with pivotal roles in the control of membrane fluidity and maintenance of membrane microarchitecture, directly impacting on GPCR stability, dynamics, and function. Cholesterol extraction from pancreatic beta cells has previously been shown to disrupt the internalisation, clustering, and cAMP responses of the glucagon-like peptide-1 receptor (GLP-1R), a class B1 GPCR with key roles in the control of blood glucose levels via the potentiation of insulin secretion in beta cells and weight reduction via the modulation of brain appetite control centres. Here, we unveil the detrimental effect of a high cholesterol diet on GLP-1R-dependent glucoregulation in vivo, and the improvement in GLP-1R function that a reduction in cholesterol synthesis using simvastatin exerts in pancreatic islets. We next identify and map sites of cholesterol high occupancy and residence time on active vs inactive GLP-1Rs using coarse-grained molecular dynamics (cgMD) simulations, followed by a screen of key residues selected from these sites and detailed analyses of the effects of mutating one of these, Val229, to alanine on GLP-1R-cholesterol interactions, plasma membrane behaviours, clustering, trafficking and signalling in INS-1 832/3 rat pancreatic beta cells and primary mouse islets, unveiling an improved insulin secretion profile for the V229A mutant receptor. This study (1) highlights the role of cholesterol in regulating GLP-1R responses in vivo; (2) provides a detailed map of GLP-1R - cholesterol binding sites in model membranes; (3) validates their functional relevance in beta cells; and (4) highlights their potential as locations for the rational design of novel allosteric modulators with the capacity to fine-tune GLP-1R responses.

    1. Cell Biology
    2. Immunology and Inflammation
    Alejandro Rosell, Agata Adelajda Krygowska ... Esther Castellano Sanchez
    Research Article

    Macrophages are crucial in the body’s inflammatory response, with tightly regulated functions for optimal immune system performance. Our study reveals that the RAS–p110α signalling pathway, known for its involvement in various biological processes and tumourigenesis, regulates two vital aspects of the inflammatory response in macrophages: the initial monocyte movement and later-stage lysosomal function. Disrupting this pathway, either in a mouse model or through drug intervention, hampers the inflammatory response, leading to delayed resolution and the development of more severe acute inflammatory reactions in live models. This discovery uncovers a previously unknown role of the p110α isoform in immune regulation within macrophages, offering insight into the complex mechanisms governing their function during inflammation and opening new avenues for modulating inflammatory responses.