Coupling to short linear motifs creates versatile PME-1 activities in PP2A holoenzyme demethylation and inhibition

  1. Yitong Li
  2. Vijaya Kumar Balakrishnan
  3. Michael Rowse
  4. Cheng-Guo Wu
  5. Anastasia Phoebe Bravos
  6. Vikash K Yadav
  7. YIva Ivarsson
  8. Stefan Strack
  9. Irina V Novikova
  10. Yongna Xing  Is a corresponding author
  1. University of Wisconsin-Madison, United States
  2. Indiana University - Purdue University Columbus, United States
  3. Uppsala University, Sweden
  4. University of Iowa, United States
  5. Pacific Northwest National Laboratory, United States

Abstract

Protein phosphatase 2A (PP2A) holoenzymes target broad substrates by recognizing short motifs via regulatory subunits. PP2A methylesterase 1 (PME-1) is a cancer-promoting enzyme and undergoes methylesterase activation upon binding to the PP2A core enzyme. Here we showed that PME-1 readily demethylates different families of PP2A holoenzymes and blocks substrate recognition in vitro. The high-resolution cryo-EM structure of a PP2A-B56 holoenzyme-PME-1 complex reveals that PME-1 disordered regions, including a substrate-mimicking motif, tether to the B56 regulatory subunit at remote sites. They occupy the holoenzyme substrate-binding groove and allow large structural shifts in both holoenzyme and PME-1 to enable multi-partite contacts at structured cores to activate the methylesterase. B56-interface mutations selectively block PME-1 activity toward PP2A-B56 holoenzymes and affect the methylation of a fraction of total cellular PP2A. The B56-interface mutations allow us to uncover B56-specific PME-1 functions in p53 signaling. Our studies reveal multiple mechanisms of PME-1 in suppressing holoenzyme functions and versatile PME-1 activities derived from coupling substrate-mimicking motifs to dynamic structured cores.

Data availability

All data are available in the main text or in the supplementary materials. The cryo-EM map and the refined atomic model of PP2A-B56γ1-PME-1 complex has been deposited at EMDB (https://www.ebi.ac.uk/https://www.ebi.ac.uk/) and RCSB (https://www.rcsb.org/) under the accession codes of EMD-25363 and 7SOY, respectively.

Article and author information

Author details

  1. Yitong Li

    Department of Oncology, University of Wisconsin-Madison, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Vijaya Kumar Balakrishnan

    Department of Oncology, University of Wisconsin-Madison, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Michael Rowse

    Indiana University - Purdue University Columbus, Columbus, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5572-5258
  4. Cheng-Guo Wu

    Department of Oncology, University of Wisconsin-Madison, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Anastasia Phoebe Bravos

    Department of Oncology, University of Wisconsin-Madison, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Vikash K Yadav

    5Department of Chemistry, Uppsala University, Uppsala, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  7. YIva Ivarsson

    5Department of Chemistry, Uppsala University, Uppsala, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  8. Stefan Strack

    Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Irina V Novikova

    Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Yongna Xing

    Department of Oncology, University of Wisconsin-Madison, Madison, United States
    For correspondence
    xing@oncology.wisc.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9834-528X

Funding

National Institute of General Medical Sciences (GM137090-01 (Y.X.))

  • Yongna Xing

American Cancer Society (RSG-10-153-01-DMC (Y.X.))

  • Yongna Xing

Jordan's Guardian Angels Foundation and Jordan's Syndrome research consortium fund from the State of California (A19-3376-5007 (Y.X.))

  • Yongna Xing

National Institute of General Medical Sciences (GM096060-01 (Y.X.))

  • Yongna Xing

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 1,016
    views
  • 290
    downloads
  • 9
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yitong Li
  2. Vijaya Kumar Balakrishnan
  3. Michael Rowse
  4. Cheng-Guo Wu
  5. Anastasia Phoebe Bravos
  6. Vikash K Yadav
  7. YIva Ivarsson
  8. Stefan Strack
  9. Irina V Novikova
  10. Yongna Xing
(2022)
Coupling to short linear motifs creates versatile PME-1 activities in PP2A holoenzyme demethylation and inhibition
eLife 11:e79736.
https://doi.org/10.7554/eLife.79736

Share this article

https://doi.org/10.7554/eLife.79736

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Marina Dajka, Tobias Rath ... Benesh Joseph
    Research Article

    Lipopolysaccharides (LPS) confer resistance against harsh conditions, including antibiotics, in Gram-negative bacteria. The lipopolysaccharide transport (Lpt) complex, consisting of seven proteins (A-G), exports LPS across the cellular envelope. LptB2FG forms an ATP-binding cassette transporter that transfers LPS to LptC. How LptB2FG couples ATP binding and hydrolysis with LPS transport to LptC remains unclear. We observed the conformational heterogeneity of LptB2FG and LptB2FGC in micelles and/or proteoliposomes using pulsed dipolar electron spin resonance spectroscopy. Additionally, we monitored LPS binding and release using laser-induced liquid bead ion desorption mass spectrometry. The β-jellyroll domain of LptF stably interacts with the LptG and LptC β-jellyrolls in both the apo and vanadate-trapped states. ATP binding at the cytoplasmic side is allosterically coupled to the selective opening of the periplasmic LptF β-jellyroll domain. In LptB2FG, ATP binding closes the nucleotide binding domains, causing a collapse of the first lateral gate as observed in structures. However, the second lateral gate, which forms the putative entry site for LPS, exhibits a heterogeneous conformation. LptC binding limits the flexibility of this gate to two conformations, likely representing the helix of LptC as either released from or inserted into the transmembrane domains. Our results reveal the regulation of the LPS entry gate through the dynamic behavior of the LptC transmembrane helix, while its β-jellyroll domain is anchored in the periplasm. This, combined with long-range ATP-dependent allosteric gating of the LptF β-jellyroll domain, may ensure efficient and unidirectional transport of LPS across the periplasm.

    1. Biochemistry and Chemical Biology
    Jaskamaljot Kaur Banwait, Liana Islam, Aaron L Lucius
    Research Article

    Escherichia coli ClpB and Saccharomyces cerevisiae Hsp104 are AAA+ motor proteins essential for proteome maintenance and thermal tolerance. ClpB and Hsp104 have been proposed to extract a polypeptide from an aggregate and processively translocate the chain through the axial channel of its hexameric ring structure. However, the mechanism of translocation and if this reaction is processive remains disputed. We reported that Hsp104 and ClpB are non-processive on unfolded model substrates. Others have reported that ClpB is able to processively translocate a mechanically unfolded polypeptide chain at rates over 240 amino acids (aa) per second. Here, we report the development of a single turnover stopped-flow fluorescence strategy that reports on processive protein unfolding catalyzed by ClpB. We show that when translocation catalyzed by ClpB is challenged by stably folded protein structure, the motor enzymatically unfolds the substrate at a rate of ~0.9 aa s−1 with a kinetic step-size of ~60 amino acids at sub-saturating [ATP]. We reconcile the apparent controversy by defining enzyme catalyzed protein unfolding and translocation as two distinct reactions with different mechanisms of action. We propose a model where slow unfolding followed by fast translocation represents an important mechanistic feature that allows the motor to rapidly translocate up to the next folded region or rapidly dissociate if no additional fold is encountered.