Impact of energy limitations on function and resilience in long-wavelength photosystem II

  1. Stefania Viola  Is a corresponding author
  2. William Roseby
  3. Stefano Santabarbara
  4. Dennis Nürnberg
  5. Ricardo Assunção
  6. Holger Dau
  7. Julien Sellés
  8. Alain Boussac
  9. Andrea Fantuzzi
  10. A William Rutherford  Is a corresponding author
  1. Imperial College London, United Kingdom
  2. Consiglio Nazionale delle Ricerche, Italy
  3. Freie Universität Berlin, Germany
  4. Institut de Biologie Physico-Chimique, France
  5. CEA Saclay, France

Abstract

Photosystem II (PSII) uses the energy from red light to split water and reduce quinone, an energy-demanding process based on chlorophyll a (Chl-a) photochemistry. Two types of cyanobacterial PSII can use chlorophyll d (Chl-d) and chlorophyll f (Chl-f) to perform the same reactions using lower energy, far-red light. PSII from Acaryochloris marina has Chl-d replacing all but one of its 35 Chl-a, while PSII from Chroococcidiopsis thermalis, a facultative far-red species, has just 4 Chl-f and 1 Chl-d and 30 Chl-a. From bioenergetic considerations, the far-red PSII were predicted to lose photochemical efficiency and/or resilience to photodamage. Here, we compare enzyme turnover efficiency, forward electron transfer, back-reactions and photodamage in Chl-f-PSII, Chl-d-PSII and Chl-a-PSII. We show that: i) all types of PSII have a comparable efficiency in enzyme turnover; ii) the modified energy gaps on the acceptor side of Chl-d-PSII favour recombination via PD1+Phe- repopulation, leading to increased singlet oxygen production and greater sensitivity to high-light damage compared to Chl-a-PSII and Chl-f-PSII; iii) the acceptor-side energy gaps in Chl-f-PSII are tuned to avoid harmful back reactions, favouring resilience to photodamage over efficiency of light usage. The results are explained by the differences in the redox tuning of the electron transfer cofactors Phe and QA and in the number and layout of the chlorophylls that share the excitation energy with the primary electron donor. PSII has adapted to lower energy in two distinct ways, each appropriate for its specific environment but with different functional penalties.

Data availability

Data and materials availability: All data generated and analysed during this study have been included in the manuscript and supporting file and provided as Source Data files.

Article and author information

Author details

  1. Stefania Viola

    Department of Life Sciences, Imperial College London, London, United Kingdom
    For correspondence
    s.viola@imperial.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  2. William Roseby

    Department of Life Sciences, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Stefano Santabarbara

    Photosyntesis Research Unit, Consiglio Nazionale delle Ricerche, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
  4. Dennis Nürnberg

    Physics Department, Freie Universität Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Ricardo Assunção

    Physics Department, Freie Universität Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Holger Dau

    Physics Department, Freie Universität Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Julien Sellés

    Institut de Biologie Physico-Chimique, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  8. Alain Boussac

    CEA Saclay, Gif-Sur-Yvette, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Andrea Fantuzzi

    Department of Life Sciences, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. A William Rutherford

    Department of Life Sciences, Imperial College London, London, United Kingdom
    For correspondence
    a.rutherford@imperial.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3124-154X

Funding

Biotechnology and Biological Sciences Research Council (BB/R001383/1)

  • Stefania Viola
  • William Roseby
  • Andrea Fantuzzi
  • A William Rutherford

Biotechnology and Biological Sciences Research Council (BB/V002015/1)

  • Stefania Viola
  • William Roseby
  • Andrea Fantuzzi
  • A William Rutherford

Biotechnology and Biological Sciences Research Council (BB/R00921X)

  • Stefania Viola
  • William Roseby
  • Andrea Fantuzzi
  • A William Rutherford

Labex (ANR-11-LABX-0011-01)

  • Julien Sellés

French Infrastructure for Integrated Structural Biology (ANR-10-INBS-05)

  • Alain Boussac

Fondazione Cariplo (2016-0667)

  • Stefano Santabarbara

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Viola et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,083
    views
  • 524
    downloads
  • 22
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Stefania Viola
  2. William Roseby
  3. Stefano Santabarbara
  4. Dennis Nürnberg
  5. Ricardo Assunção
  6. Holger Dau
  7. Julien Sellés
  8. Alain Boussac
  9. Andrea Fantuzzi
  10. A William Rutherford
(2022)
Impact of energy limitations on function and resilience in long-wavelength photosystem II
eLife 11:e79890.
https://doi.org/10.7554/eLife.79890

Share this article

https://doi.org/10.7554/eLife.79890

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Yamato Niitani, Kohei Matsuzaki ... Michio Tomishige
    Research Article

    The two identical motor domains (heads) of dimeric kinesin-1 move in a hand-over-hand process along a microtubule, coordinating their ATPase cycles such that each ATP hydrolysis is tightly coupled to a step and enabling the motor to take many steps without dissociating. The neck linker, a structural element that connects the two heads, has been shown to be essential for head–head coordination; however, which kinetic step(s) in the chemomechanical cycle is ‘gated’ by the neck linker remains unresolved. Here, we employed pre-steady-state kinetics and single-molecule assays to investigate how the neck-linker conformation affects kinesin’s motility cycle. We show that the backward-pointing configuration of the neck linker in the front kinesin head confers higher affinity for microtubule, but does not change ATP binding and dissociation rates. In contrast, the forward-pointing configuration of the neck linker in the rear kinesin head decreases the ATP dissociation rate but has little effect on microtubule dissociation. In combination, these conformation-specific effects of the neck linker favor ATP hydrolysis and dissociation of the rear head prior to microtubule detachment of the front head, thereby providing a kinetic explanation for the coordinated walking mechanism of dimeric kinesin.

    1. Structural Biology and Molecular Biophysics
    Christopher T Schafer, Raymond F Pauszek III ... David P Millar
    Research Article

    The canonical chemokine receptor CXCR4 and atypical receptor ACKR3 both respond to CXCL12 but induce different effector responses to regulate cell migration. While CXCR4 couples to G proteins and directly promotes cell migration, ACKR3 is G-protein-independent and scavenges CXCL12 to regulate extracellular chemokine levels and maintain CXCR4 responsiveness, thereby indirectly influencing migration. The receptors also have distinct activation requirements. CXCR4 only responds to wild-type CXCL12 and is sensitive to mutation of the chemokine. By contrast, ACKR3 recruits GPCR kinases (GRKs) and β-arrestins and promiscuously responds to CXCL12, CXCL12 variants, other peptides and proteins, and is relatively insensitive to mutation. To investigate the role of conformational dynamics in the distinct pharmacological behaviors of CXCR4 and ACKR3, we employed single-molecule FRET to track discrete conformational states of the receptors in real-time. The data revealed that apo-CXCR4 preferentially populates a high-FRET inactive state, while apo-ACKR3 shows little conformational preference and high transition probabilities among multiple inactive, intermediate and active conformations, consistent with its propensity for activation. Multiple active-like ACKR3 conformations are populated in response to agonists, compared to the single CXCR4 active-state. This and the markedly different conformational landscapes of the receptors suggest that activation of ACKR3 may be achieved by a broader distribution of conformational states than CXCR4. Much of the conformational heterogeneity of ACKR3 is linked to a single residue that differs between ACKR3 and CXCR4. The dynamic properties of ACKR3 may underly its inability to form productive interactions with G proteins that would drive canonical GPCR signaling.